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The thermal conductivity of a brass rod is measured using Ångström’s
method. A periodic square wave of heat is applied to a reservoir at one end
of the rod, while the other end is left at room temperature. As the heat
wave propagates down the rod, it is attenuated, losing amplitude and
experiencing a phase shift. Two thermistors, located at separate points
along the rod, measure the resulting temperature waves. Using a Fourier
transform, the strongest contributions of the original square wave can be
isolated and individually analyzed to deduce the thermal conductivity of
the rod. Three values were obtained for the thermal conductivity, from the
three strongest harmonics present in the observed temperature waves,
k=100±3, 120±14, and 180±62 W/mK, in comparison with the accepted
value of 120 W/mK.

INTRODUCTION
Measurement of the conduction of heat

is a significant problem that affects many areas
of material science and engineering. The
applications of information on thermal
conductivity range from the transfer of heat in
solar panels to materials used in dentistry.
Important applications to science and
engineering include drawing heat from electrical
components. One example of this is the
mounting of semiconductors on diamonds to
prevent damage from overheating, since
diamonds have an extremely high conductivity
at room temperature1.

Many methods have been developed for
measuring thermal conductivity accurately.
Static methods involve measurements of the
temperature gradient in conjuction with the heat
flux. Dynamic methods are typically more
effective at room temperature, heat losses
having a smaller effect on the measurement1.
This experiment is based on a dynamic method
of measuring thermal conductivity of a metal
rod developed by Ångström in 1863. Heat is
applied periodically to one end of a metal rod
while the other end is left at the temperature of
the surrounding medium. A heat wave
propagates down the length of the rod, both
losing amplitude and experiencing a phase shift.
The fluctuations in temperature as a function of
time are measured by two thermistors along the
rod, and a comparison of the temperature waves
leads to a determination of the thermal
conductivity value for the metal.

THEORY
The derivation2 of an expression for the

thermal conductivity in terms of known or
measurable quantities requires that the heat
applied to the chamber be periodic rather than
constant. Applying a periodic heat to one end of
a rod produces a heat wave that propagates
down the length of the rod, which can be
measured by the difference in temperature.
Expressing this temperature variation at any
point of the rod becomes complicated due to the
nature of the thermal processes within the rod;
the change in heat is governed by several
factors. There are four different processes
considered that cause a change in the heat of the
rod. One is the thermal conduction of heat,
defined as the rate of heat energy lost through a
surface ds, where k is the thermal conductivity
(constant for a uniform material), and T is the
temperature. Externally applying heat to a metal
also increases its temperature, and the amount of
heat required to change the temperature of a
volume element dV of a metal of density ρ is
defined by its specific heat s. Radiation accounts
for heat lost through a surface element ds, which
can be described by Newton’s law of cooling,
relating the temperature of the rod to its ambient
temperature To. R is a constant which depends
on the radiative emission properties of the
surface of the metal. The fourth way of
changing the heat of the rod is a source within
the rod. For the following experiment, there are
no such sources, and so this process is not
included in the expression.
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Eqn. 1 shows the combination of the first
three processes described above.

− R(T − To∫∫ )ds + k∇T • ds = sρ
∂T

∂t∫∫∫∫∫ dV  (1)

Using Green’s theorem, the surface integral of
the conductivity term may be changed to a
volume integral. The integrals may be further
reduced to position integrals in one dimension,
integrating over the length of the rod from the
near to the far thermistors. Since we are
interested in relative and not absolute
temperatures, we can express the temperature in
terms of τ = T-To, to give a wave equation for
the temperature:

k
∂ 2τ
∂x 2 − sρ

∂τ
∂t

−
PR

A
τ = 0  (2)

           A solution to this equation, assuming the
power applied is a pure sine wave of frequency
f=ω/2π, is
τ = τ − τo = B(x)eiωt  (3)

in which τo is the mean temperature about which

the oscillations occur, and ω is the frequency of
the input wave. Substituting this back into Eqn.
2 and factoring out the eiωt gives a differential
equation in x:
d2B(x)

dx2 = (
PR

Ak
+

iωsρ
k

)B(x)  (4)

A complex solution is of the form
B(x) = Boe− λx  (5)
where

λ = α + iβ  (6)
The complex terms of the coefficient of Eqn. 4
and λ may be equated to develop an expression
(Eqn. 7) for k independent of R, a value that is
difficult to determine due to the nature of the
experimental setup.

k =
sρω
2αβ

 (7)

Determining expressions for α and β
requires a comparison of the two temperature
waves observed at x1 and x2. The preceding
discussion applies to a temperature wave that
results from a sinusoidal input of power to the
heater. For any other type of periodic input,
such as a square wave, a Fourier transform may
be used to isolate the individual contributions of
the harmonics present in the temperature wave.
For the nth harmonic, the temperature equation
is (from Eqn. 3)

τ (x,t) = Anei( nωt − βn x )

An = Bone
−α nx

 (8)

The ratio of the amplitude observed at
thermistor one (near) to that observed at
thermistor two (far) can be rearranged to
determine α:
An1

An 2

= e−α n ( x 1− x2 ) ⇒ αn =
ln(An1 An 2)

x1 − x2

 (9)

Similarly, we can find an expression for βn by
finding the difference in phase of the two
temperature waves:

φ1 − φ2 = βn(x2 − x1) ⇒ βn

(φ1 − φ2)

(x2 − x1 )
           (10)

Substituting Eqns. 9 and 10 into Eqn. 7, gives
the final expression for the thermal conductivity
of the metal.

k =
sρnω(x2 − x1)2

2(φ2 − φ1)ln( An 1 An2 )
           (11)

EXPERIMENT
A cylindrical brass rod, approximately

1m in length and 1cm in diameter, is suspended
in the air; one end is supported by a shelf, the
other end clamped to a ring stand. On one end is
a thermofoil heater attached to a reservoir in
thermal contact with the rod. The apparatus was
originally designed to accommodate periodic
heating by alternating currents of steam and
cold water through the reservoir. Currently, the
heating is accomplished by a Kepco Power
Supply that applies a signal to the heater. The
power supply is configured to send voltages of 0
to 50V. A Tektronix function generator provides
the square wave signal to the power supply with
a frequency of 10-3 s -1. A very low frequency is
used in order to allow the temperature wave to
propagate through the rod with an amplitude
that is easily measurable. The entire rod is also
surrounded by both a foam insulation and
bubble wrap in order to prevent loss of heat
through radiation and conduction.

Two YSI 44004 Precision thermistors
are housed in small holes drilled into the rod,
and held in place by a thermally conductive
epoxy. The distance between the thermistors,
measured by a vernier caliper, is 15.0±0.1cm.
The thermistors are wired into a series circuit
with a reference resistance of 15kΩ, and a 1.5V
dry cell battery. The thermistors have a varying
resistance that is related to their temperature,
and the reference resistor provides a means of
determining the current through the circuit.
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Each resistor is connected to a channel of the
Hewlett Packard 3421A Data Acquisition Unit,
which measures the voltage across each one.

The collection of data is automated by a
program written in LabVIEW 4.1 on a
Macintosh. The program reads in the voltages
from the HP3421A, and calculates the
resistances of the thermistors. The LabVIEW
program then calculates the temperature values
and their corresponding time values, saving
them in a text file.

The program is run to collect data until
the rod has heated up to a constant mean
temperature and the resulting wave has only its
steady-state component for several periods. The
actual frequency of the function generator must
be chosen carefully in order to accommodate the
analysis technique. The frequency must be
adjusted so that there are 2N points for an
integral number of wavelengths of the
temperature wave, in order to accommodate the
Fourier transform.

The text file produced by the LabVIEW
program contains the temperatures of the near
and far thermistors as a function of time. The
data used was collected from a single run. A
small subsection of this data over four periods
of the waves, which corresponds to about 90
minutes of data, was selected for analysis (see
Figure 1). This subsection must be fairly
consistent over time, well after the heating up of
the rod, which took around four hours. The
frequency (ω = (4.744 ± 0.031) x10-3 Hz) of the
wave was determined directly from the raw
data. The change in time for several periods was
divided into the number of wavelengths. The
error was estimated from several such
calculations.
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FIG. 1. The section of temperature data analyzed is
displayed for both thermistors. Note the difference in
amplitude and phase, but the identical frequency.

Figure 1 shows the temperature
fluctuations measured by the two thermistors,
and certain properties of how the wave
propagates down the rod. When the

temperatures are graphed against time, it is clear
that the temperature wave measured by the
thermistor closer to the heater (near thermistor)
has an amplitude much larger and a mean
temperature higher than the thermistor located
farther away (far thermistor). In addition to the
difference in amplitude, the phase is slightly
different for the two waves, with the wave at the
near thermistor slightly trailing that of the far
thermistor. Also, the frequency is the same for
both waves, which corresponds to the frequency
of the square wave input by the frequency
generator to the heater.

The Fourier transform of the data was
calculated by employing a function provided by
Igor Pro. From the list of 1024 temperature
points was calculated the Fourier transform of
the wave, producing 513 real and imaginary
points. Table I lists the magnitude and phase
values of the Fourier transform for the first,
third, and fifth harmonics. These were the
strongest contributions of the terms of the
Fourier series.

n Near Temperature Far Temperature
Mag. Phase Mag. Phase

1 2620±70 0.0202±0.0021 700±10 1.22±0.01
3 210±10 0.120±0.015 26±5 2.09±0.13
5 57±5 0.0189±0.0089 6±4 2.02±0.32
Table I. The magnitude and phase values for the two
waves, from the Fourier transform. n is the number of the
harmonic.

The phase angles were observed to shift for the
different harmonics. Calculation of the phase
angle also required determining its quadrant,
which was evident from the signs of the real and
imaginary values. Since the arctan function
returns values for only the first and fourth
quadrants, π radians were added to the second
quadrant angles to shift their values to the
correct quadrant.

Figure 2 shows the plot of the
magnitudes of the Fourier transform versus
point number, showing peaks at the odd
harmonics. The number of the harmonic is the
nth multiple of four in the point number values.
This correspondence is a result of analysis over
four wavelengths.
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FIG 2. A graph of magnitude versus point number for the
Fourier transform of both temperature waves. Peaks occur
at the odd harmonics, stronger for the wave measured by
the near thermistor than the far thermistor.

Figure 2 also exhibits certain properties
of the temperature waves. The peaks for both
thermistors occur at the odd harmonics. This is
expected since the input to the heater was a
square wave, which contains only odd
harmonics. There are more peaks observed in
the wave measured by the near thermistor than
the far thermistor, indicating that there were
stronger contributions from each harmonic of
the input square wave measured at the near
thermistor. At the far thermistor, the peak at the
first harmonic is very significant, the peak at the
third and fifth harmonics are much smaller in
comparison, and beyond the fifth harmonic, any
subsequent peaks are indistinguishable from the
background noise. So the lowest frequencies
were able to propagate farther along the rod than
the higher frequencies. This is also evident in
Figure 1, since the temperature wave at the far
thermistor appears much closer to a sinusoidal
wave than the wave at the near thermistor.

ANALYSIS AND INTERPRETATION
Values of k were calculated using

accepted values of the density3 of brass as ρ =
8470 kg/m3, and the specific heat4 as s = 368
J/kgK. There was some question as to what the
type of brass was, but this uncertainty did not
make a significant contribution to the
calculation of error for the thermal conductivity
values. Most of the error associated with the
thermal conductivity values were a result of the
uncertainties in the magnitude and phase.

Harmonic k(W/mK) δk
1 100 3
3 120 14
5 180 62

Accepted3 120 --
Table II. The values for the error in the thermal
conductivity of brass increase with the number of the
harmonic as expected. The third and fifth harmonics have
values for k within their errors, but the first harmonic
does not.

The values for the error in the measured
thermal conductivity increase for each
successive harmonic. This reflects the
uncertainty in the real and imaginary values for
the Fourier transform as well. It is expected that
the k value calculated from the first harmonic is
the best known, since this is the strongest
contribution in the waves measured at both
thermistors. The third and fifth harmonics agree
with the accepted value within their margins of
error, the third harmonic showing quite close
agreement. The first harmonic shows a
significant difference from the accepted value,
much larger than its error.

A number of possible sources of error in
the thermal conductivity values are involved in
the analysis. The Fourier transform executed by
Igor required 2N points per integral number of
wavelengths for the section of data analyzed. It
was difficult to collect data in exactly this
manner, and so the actual section of data
analyzed did not contain four entire
wavelengths; there was a small section of the
wavelength cut off in order to select the correct
number of points. If the section of the
temperature waves selected had mean
temperature fluctuations, the Fourier transform
values would also have been affected. Also, the
uncertainties for the magnitudes and phase
angles were chosen conservatively from the
background noise, but may still not be
representative of the actual uncertainty in these
values.

CONCLUSION
The thermal conductivity of a brass rod

at room temperature was measured using
Ångström’s method. Analysis of a temperature
wave propagating down the rod using a Fourier
transform revealed the individual contributions
of the three strongest harmonics. For each
harmonic, a value for the thermal conductivity
was calculated. The thermal conductivity values
from the third and fifth harmonics showed
agreement with the accepted value within their
error values, while the value from the first
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harmonic had a very small error, but a much
larger discrepancy from the accepted value.
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