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1 An introduction to dimensional analysis

1.1 Introductory remarks about the course: Why these
topics are hopefully interesting!

In introductory physics courses you learn basic ideas of mechanics, such as
analyzing the motion of objects due to applied forces, the conservation of
(mechanical) energy and the interconversion of kinetic and potential energies,
and thermodynamics, which introduces the concepts of internal and thermal
energy, entropy, etc. The concepts of force and energy balances are at the heart
of the study of fluid mechanics. More generally, problems that involve heat
transfer, e.g. thermal conduction, energy transfer by flow, and radiation,
mass transfer, e.g. diffusion of a chemical or transport of a chemical by flow,
and momentum or stress transfer, which is at the heart of the study of fluid
motion, all can be analyzed using conservation or balance laws. Explaining,
illustrating and applying the principles of heat, mass and momentum transfer
will form the basis for the majority of this course.

Before we embark on the study of transport phenomena, however, we
will introduce elementary ideas related to modelling and, in particular, we will
emphasize the dimensional structure of equations and problem statements.
The majority of this chapter focuses on developing a style of inquiry and
thinking that takes advantage of the dimensions of the variables that appear
in a problem statement. Many examples are provided and some important
general principles are given, e.g. the significance of dimensionless groups and
the Buckingham-Pi Theorem. In this course we will make frequent use of these
ideas as we learn to characterize the kinds of problems that arise in transport
processes.

In this chapter we will:

(1) In the remainder of this section we will motivate some of the physical
kinds of problems for which we can use dimensional analysis to provide
quantitative insight. The examples are described qualitatively and come
from many different subject areas which should help highlight the man-
ifold aspects of studying transport processes.

(2) In the second section we show the idea of dimensionless groups, we dis-
cuss the distinction between units and dimensions, and we give the clas-
sical example where the period of the simple pendulum is deduced via
arguments based solely on dimensions.
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(3) In the third section we give the Buckingham-Pi Theorem which states
that the solution to any problem can be organized using a fewer number
of dimensionless groups than the number of original variables in the
problem statement.

(4) The fourth section gives many examples showing how dimensional argu-
ment lead to quantitative answers.

(5) The fifth section discusses the spring-mass-damper system, familiar from
basic physics and mechanics courses, from several perspectives. In partic-
ular, we illustrate an important idea, which is how to make an equation
dimensionless. The steps required are only elementary algebra and cal-
culus but it is important to understand them, and to be able to carry
them out easily, in order to get more insight into problems later in the
semester.

(6) In Section 6 we simply give a detailed example for making a partial
differential equation (from bending of a beam which you would have
been introduced if you have taken ES120) dimensionless.

(7) A formal procedure for carrying out dimensional analysis using a tabular
method for keeping track of dimensions is shown in Section 7.

(8) Finally, a brief discussion of dimensional analysis for problems involving
electrical charge is given in Section 8.

(9) A long list of problems concludes the chapter.

An example of the potential importance of a result in scaling form: In
some cases, simply recognizing the dimensional structure of an answer is im-
portant to draw significant conclusions; e.g. one example we will learn about
when we study fluid flow in pipes concerns the relationship of the pressure
drop ∆p and the volumetric flow (volume/time) Q in a pipe of radius R. We
will find Explain why an

equation of the
form ∆p ∝ Q/R4

implies that a
10% reduction in
radius, leads to
approximately a
40% decrease in
flow rate for the
same ∆p.

∆p ∝ Q

R4
(1)

and the larger integer power on the radial dependence has important health
implications: a 10% reduction in radius, perhaps produced by a diet high in
fatty foods, leads to approximately a 40% decrease in flow rate (in this case,
blood supply) for the same pressure drop maintained by your heart! By the
end of this course we should understand why ∆p ∝ Q/R4 for a laminar pipe
flow of a viscous fluid.
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There are many examples that help illustrate why thinking first about
the dimensional structure of problems may prove useful. For example, why is
it that the smallest cells are nearly spherical in shapes but large organisms,
e.g. fish, mammals, etc. are more cylindrical, and some are shaped very
much like aerofoils (e.g. an airplane wing)? Hint: The answer is linked to the
surface to volume ratio which increases as the size of the object decreases. In
a similar spirit, why are large soda bottles more commonly made out of plastic
while smaller soda bottles are made out of thicker plastic or glass, and most
canned beverages are made out of metal? Hint: The answer has to do with the
transport of gases across the container’s surface (this changes the properties of
the liquid, in this case related to taste of the beverage) and so again involves
thinking about implications of the surface to volume ratio.

Other examples involve modern technology. For example, we will study
briefly how the operating speed of modern computers (gaming machines, lap-
tops, the fastest processors) is a strong function of temperature that exhibits
a decreasing speed with increasing temperature. Thus, the heat transfer char-
acteristics of microelectronic components are crucial to their performance and
in cases like this having lots of extra surface area to enhance heat transport is
important. Again, there arises the significance of the surface area (where heat
is lost) to volume (where heat is generated).

Some of the examples we will see during the course involve nature. For
example, we will learn about beetles that when attacked excrete a liquid at
the bottom of their feet because there is a substantial suction or adhesive
force that arises when liquid is confined in a narrow gap between two surfaces.
The origin of this macroscopic force is the surface tension that characterizes
the forces or energy at a liquid-air interface; it is this same interfacial force
that is responsible for moving fluid from the roots of plants and trees to the
leaves (perhaps 100 meters high for the largest trees). Again, implicit in these
examples will be the role of forces at surfaces. Thinking about these problems
will be aided by having a good understanding of dimensional considerations
when setting up problems.

The classic book on the topic of dimensional reasoning, appropriately
titled “Dimensional Analysis” was written in the 1920s by P.W. Bridgman, a
professor of physics at Harvard. The book was based on a series of lectures
Bridgman gave, some of which, at least judging from the book, were probably
like some of the lectures for this course! In addition, Lord Rayleigh, who is
famous in mathematics and physics for many original research contributions,
not the least of which was the discovery of the first noble gas, argon, for which
he received the 1903 Nobel Prize in Physics, wrote a beautiful short article in
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Nature in 1914 where he argues for the importance of dimensional reasoning.
The article is given at the end of these notes and we will on occasion draw
questions from Lord Rayleigh’s list of examples. Along with Rayleigh’s article,
we include three other articles with a biological focus, which address the theme
of size and scale as it impacts the mechanical understanding, and the relation
of structure to function, in biological systems. These articles should make
clear the power of using dimensional reasoning to help understand systems.

1.2 The basic ideas related to dimensional analysis

Here we introduce the idea of dimensional analysis, rescaling of variables and
nondimensional parameters. We will use these ideas throughout the course.
At the outset we will content ourselves with illustrating the spirit and style of
the ideas and give a few examples. Then, in later sections we will provide a
more systematic approach since there is a structure and a formal mathematical
description that can be useful, especially in problems involving many variables.

In your previous science and mathematics courses, you have made math-
ematical models, developed equations, obtained analytical solutions, substi-
tuted lots of numbers into equations, etc. There was probably one idea that Many students

have the very
(very) bad habit
of always first
substituting
numbers into
equations at the
start of problem
solving. You can
never see the
structure of any
problem solution
if you do this and
you must learn to
work symbolically.

was overlooked when you had your first few courses and this concerns some
structural features of any problem statement that generally constrain the form
of the answer. Here we illustrate how the dimensions of the variables that
appear when expressing a given problem or question provide valuable infor-
mation about possible forms of the answer. In some cases, these ideas even,
more or less, give the explicit quantitative answer!

1.2.1 A first example from introductory mechanics: a projectile

Example 1 - Problem statement: As illustrated in Figure 1 a projectile of
mass m has initial height h above the ground. It is projected horizontally
(x) with velocity v0. Find the horizontal displacement when the projectile hits
the ground. We neglect resistance from the air, but do note that later in this
course we will learn how to calculate such resistance. Before beginning

the detailed
solution presented
next you should
first ask: How
many variables
are involved in
the problem
description?

Here is how you would proceed in an introductory course. Label the
horizontal and vertical coordinates as x and z, respectively, and let g indicate
the gravitational acceleration (downward). Recall that in a uniform gravita-
tional field the vertical motion z(t) of the projectile follows from the algebraic
equation

You should
obviously be able
to derive this
result beginning
with Newton’s
Second Law,
F = ma.
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Figure 1: A ball projected horizontally with initial speed v0. Find the final
landing distance xfinal as a function of the parameters in the problem, such as
the initial height h, the initial speed v0, and the gravitational acceleration g.

z(t) = −1

2
gt2 + h , (2)

so that the object hits the ground (z = 0) at a time t =
√

2h/g. The corre-

sponding final horizontal displacement xfinal follows from x(t) = v0t = v0

√
2h/g

or

xfinal =

√√√√2v2
0h

g
. (3)

We observe that the projected distance increases with the square root of the
initial height h and also that the mass of the object does not affect the result
(provided we neglect air drag). How is xfinal

changed if h
increases by 30%
or by a factor of
2?

These algebraic formulae, in one form or another, are typically how the
answers are left in most books and courses. However, notice that given the
phrasing of the question, a basic distance (or length scale) involved in the
problem statement is the initial height h. So, how large is the final horizontal
displacement xfinal relative to the initial vertical displacement? Notice that the
ratio of xfinal/h is dimensionless since both the numerator and denominator
are lengths. From the exact answer in equation (3) we can write Recognize that h

is a basic unit of
length given in
the problem
statement!

xfinal

h︸ ︷︷ ︸
dimensionless distance

=
√

2

√√√√ v2
0

gh
︸ ︷︷ ︸

dimensionless
parameter

. (4)
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This equation completely describes the solution in a compact and useful form.
Notice that this result says that the projected distance relative to the initial
height h is the same if the ratio v2

0/gh is the same. We can then immediately
observe that the ratio xfinal/h is doubled if h is reduced by a factor of four or
if v0 is increased by a factor of 2. Such elementary “scaling” results carry a
lot of quantitative information and do not necessarily require writing detailed
equations to explain the prediction to a colleague.

Look again at equation (4). We refer to xfinal/h as a dimensionless pa-
rameter since it is the ratio of two lengths, and v2

0/gh is a second dimensionless
parameter or dimensionless group since it is formed from a dimensionless com-
bination of physical constants that appear in the problem statement. Since Verify that v2

0/gh
is dimensionless.xfinal/h is dimensionless we see that the final answer is a relationship between

two dimensionless groups, while the original problem statement contained
five dimensional objects (xfinal, h, g, v0,m), which certainly seems more com-
plicated. Thus, we conclude that (4) represents a simplification, at least in
keeping track of information. We will emphasize such dimensionless represen-
tations, and how they present more meaningful characterizations of a problem
statement and solution, throughout this course.

We will return to this problem shortly and explain how the basic func-
tional form of equation (4), i.e. the dependence on two dimensionless parame-
ters, though not the explicit formula involving a square root form, could have
been predicted knowing only the dimensions of the quantities given in the
problem statement.

A final take-away message about the functional dependence in problems: It
is important to recognize that when the projectile problem was stated, you
could have immediately concluded that the quantity you sought xfinal was a
function of the other quantities that appear, either explicitly or implicitly,
in the problem statement. In this case, these quantities are h, g, v0, and m.
All of the quantities have dimensions and no matter what the form of the
mathematical relationship between these variables, the final result must be
consistent with respect to the dimensions. This idea of functional dependence
is crucial to discussing the idea of dimensional analysis further.

1.2.2 Dimensions and units

It is useful to distinguish the dimensions of a given quantity from the units
in which it is measured. In mechanics, which is concerned with force and
the corresponding motion (e.g. velocity, acceleration), it is common to take
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variable dimensions1 systems of units
mass M kg, g, lbm

time T sec, min, hr, years
length L m, cm, microns, ft, yard
area L2 m2, ...

volume L3 m3, ...
angle (=length/length) - radians, degrees

density M/L3 kg/m3, lbm/ft3

velocity L/T m/s, cm/s, ft/min
acceleration L/T 2 m/s2, ft/s2

force ML/T 2 kg m /s2=N, lbf = 32.2 lbm ft/s2

torque ML2/T 2 kg m2/s2

energy ML2/T 2 J = Nm; erg = g cm2/s2

power=energy/time ML2/T 3 J/s
pressure or stress M/L/T 2 Pascal = N/m2, psi = lbf/in2

Table 1: 1Here we are considering mass (M), length (L) and time (T ) as the
fundamental dimensions. N = Newtons. You are probably familiar with the
metric or SI sytem (the Systeme Internationale), MKS and CGS units, but not
so familiar with the English system, which is basically only used today in the
US and United Kingdom (and one or two other places). We will occasionally
use the English system just to give you some exposure to it.

as fundamental dimensions mass (M), length (L) and time (T ). Then, for
example, by Newton’s second law, F = ma, we know that acceleration has
dimensions [a] = L/T 2 and so we speak of force (F ) as a derived quantity
with dimensions ML/T 2. It is convenient to introduce the bracket notation
[.] to represent the “dimensions” of a quantity. For example, we would write
[F ] = ML/T 2.

It is helpful to be familiar with the many variables that arise in com-
mon science and engineering problems. Table 1 indicates in the first column
different variables, in the second column the dimensions of the variable, and
in the third column the different expressions for the variable using different
systems of units. For example, in the MKS system, we report velocity in the
units m/s, in the CGS system we report velocity in the units cm/s, and in
the English, or British, system we report velocity in the units feet/s. It is a
simple matter to convert between these different systems of units. Conversion of

units from one
system to another
system of units is
important. For a
recent (expensive)
error of this type,
see the next
article about a
NASA project.
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Metric mishap caused loss of NASA 
orbiter 
September 30, 1999 
In this story: 
 
Metric system used by NASA for many years 
 
Error points to nation's conversion lag  

By Robin Lloyd 
CNN Interactive Senior Writer  
(CNN) -- NASA lost a $125 million Mars orbiter 
because a Lockheed Martin engineering team used 
English units of measurement while the agency's 
team used the more conventional metric system for a 
key spacecraft operation, according to a review 
finding released Thursday.  
 
The units mismatch prevented navigation information from transferring between the Mars 
Climate Orbiter spacecraft team in at Lockheed Martin in Denver and the flight team at 
NASA's Jet Propulsion Laboratory in Pasadena, California.  Lockheed Martin helped 
build, develop and operate the spacecraft for NASA. Its engineers provided navigation 
commands for Climate Orbiter's thrusters in English units although NASA has been using 
the metric system predominantly since at least 1990.  No one is pointing fingers at 
Lockheed Martin, said Tom Gavin, the JPL administrator to whom all project managers 
report.  "This is an end-to-end process problem," he said. "A single error like this should 
not have caused the loss of Climate Orbiter. Something went wrong in our system 
processes in checks and balances that we have that should have caught this and fixed it."  
 
The finding came from an internal review panel at JPL that reported the cause to Gavin 
on Wednesday. The group included about 10 navigation specialists, many of whom 
recently retired from JPL.  "They have been looking at this since Friday morning 
following the loss," Gavin said.  The navigation mishap killed the mission on a day when 
engineers had expected to celebrate the craft's entry into Mars' orbit.  
 
After a 286-day journey, the probe fired its engine on September 23 to push itself into 
orbit.  The engine fired but the spacecraft came within 60 km (36 miles) of the planet --
about 100 km closer than planned and about 25 km (15 miles) beneath the level at which 
the it could function properly, mission members said.  
 
The latest findings show that the spacecraft's propulsion system overheated and was 
disabled as Climate Orbiter dipped deeply into the atmosphere, JPL spokesman Frank 

NASA's Climate Orbiter was lost September 23, 
1999    



O'Donnell said.  That probably stopped the engine from completing its burn, so Climate 
Orbiter likely plowed through the atmosphere, continued out beyond Mars and now could 
be orbiting the sun, he said.  
 
Climate Orbiter was to relay data from an upcoming partner mission called Mars Polar 
Lander, scheduled to set down on Mars in December. Now mission planners are working 
out how to relay its data via its own radio and another orbiter now circling the red planet. 
Climate Orbiter and Polar Lander were designed to help scientists understand Mars' water 
history and the potential for life in the planet's past. There is strong evidence that Mars 
was once awash with water, but scientists have no clear answers to where the water went 
and what drove it away.  
 
NASA has convened two panels to look into what led to the loss of the orbiter, including 
the internal peer review panel that released the Thursday finding. NASA also plans to 
form a third board -- an independent review panel -- to look into the accident.  

Metric system used by NASA for many years 

A NASA document came out several years ago, when the Cassini mission to Saturn was 
under development, establishing the metric system for all units of measurement, Gavin 
said.  The metric system is used for the Polar Lander mission, as well as upcoming 
missions to Mars, he said. That review panel's findings now are being studied by a second 
group -- a special review board headed up by John Casani, which will search for the 
processes that failed to find the metric to English mismatch. Casani retired from JPL two 
months ago from the position of chief engineer for the Lab.  
 
"We're going to look at how was the data transferred," Gavin said. "How did it originally 
get into system in English units? How was it transferred? When we were doing 
navigation and Doppler (distance and speed) checks, how come we didn't find it?"  
"People make errors," Gavin said. "The problem here was not the error. It was the failure 
of us to look at it end-to-end and find it. It's unfair to rely on any one person."  
Lockheed Martin, which failed to immediately return a telephone call for comment, is 
building orbiters and landers for future Mars missions, including one set to launch in 
2001 and a mission that will return some Mars rocks to Earth a few years down the line. 
It also has helped with the Polar Lander mission, set to land on Mars on December 3 and 
conduct a 90-day mission studying martian weather. It also is designed to extend a 
robotic arm that will dig into the nearby martian soil and search for signs of water. 
NASA managers have said the Polar Lander mission will go on as planned and return 
answers to the same scientific questions originally planned -- even though the lander will 
have to relay its data to Earth without help from Climate Orbiter.  

Error points to nation's conversion lag 

Lorelle Young, president of the U.S. Metric Association, said the loss of Climate Orbiter 
brings up the "untenable" position of the United States in relation to most other countries, 
which rely on the metric system for measurement. She was not surprised at the error that 



arose.  "In this day and age when the metric system is the measurement language of all 
sophisticated science, two measurements systems should not be used," Young said.  
"Only the metric system should be used because that is the system science uses," she 
said.  She put blame at the feet of Congress that she said has squeezed NASA's budget to 
the point that it has no funds to completely convert its operations to metric.  "This should 
be a loud wake-up call to Congress that being first in technology requires funding," she 
said, "and it's a very important area for the country."  
 



Remark 1: It is also useful on occasion to view the fundamental dimensions
as force (F ), length (L) and time (T ). In this case, mass is a derived quantity
with (do this as an exercise) dimensions FT 2/L.

Remark 2: Some properties involve temperature. In this case we use degrees
Kelvin (K), as the appropriate dimension.

Remark 3: The gravitational acceleration g has dimensions L/T 2.

Exercise: What are the dimensions of power? heat capacity?

Exercise: In the quantum description of nature, Planck’s constant h enters the
quantization of different energy levels according to the equation hν = energy,
where ν is a frequency. What are the dimensions of h?

Exercise: For understanding the molecular character of matter and properties
of materials, Boltzmann’s constant kB enters. This constant is defined so that
kBT is an energy. What are the dimensions of kB?
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1.2.3 Mathematical description of nature: dimensional consistency

Consider your entire experience studying quantitative subjects. When making
comparisons, it is necessary to compare “like” with “like”. Thus, we take it
for granted that

(i) Equations must be dimensionally consistent. For example, The equation
could not be
x(t) = 1

2
gt3.

x(t)︸︷︷︸
L

=
1

2
gt2︸︷︷︸
L

T2 T 2

⇒ dimensions are: L = L (5)

(ii) A complete statement of a physical law must be independent of the units
used for representation of quantities and measurement. If this were not Notice how we

distinguish
dimensions and
units.

true, then two observers using two different measurement systems could
arrive at different conclusions to the same question. It is this fact that
forces us to the conclusion that the solution to all problems must be
expressible in dimensionless form, since it then follows that the results
that are obtained will not depend on the choice of coordinate system.

1.2.4 A second example from introductory mechanics: the pendu-
lum

Example 2: A second mechanical example we learn as physics and engineering
students (and maybe even the first one that makes a lasting impression) is the
description of the oscillations of a pendulum consisting of a mass m at the end
of a (massless) connector of length ` (see Figure 2). We seek the period of
the oscillations, assume that the pendulum is initially inclined at an angle θ0

from the vertical, and neglect friction with the air. The mathematical problem
statement is to solve for θ(t) according to the ordinary differential equation Can you begin

with Newton’s
2nd law and
derive equation
(6)?

m`
d2θ

dt2
+ mg sin θ = 0 , θ(0) = θ0,

dθ

dt
(0) = 0 . (6)

Without solving the problem we can ask about the period τ of the mo-
tion as a function of the parameters that appear in the problem statement:
m, g, `, θ0 or

τ = f(m, g, `, θ0) ... a relation involving 5 objects, (7)

where f(·) indicates “a function of”. The basic premise of dimensional analysis
is that any physical response must be expressible in a form that is independent
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Figure 2: A simple pendulum.

of the system of units1 used to make measurements or report results. Hence, we
expect that the period τ must depend on a functional form of the parameters
that has dimensions of time. Since the gravitational acceleration g, which
has dimensions L/T 2, is the only variable on the right-hand side of (7) that
involves time, then we are forced to conclude that the only possibility for the

formula for the period is τ ∝
√

`/gf(θ0), where f(θ0) is some function of the

initial angle (f is not to be confused with the same symbol that appears in
equation (7)). This result is a relationship among TWO dimensionless groups,
which we emphasize by writing:

τ√
`/g

= f(θ0) . (8)

Note that we do not require a detailed solution to deduce the dependence of
the period on ` and g nor to determine that the period is independent of
the mass m of the pendulum bob. On the other hand, also recognize that we
cannot determine from these kinds of arguments the functional form f(θ0) for
the dependence of the period on the initial inclination angle θ0. A detailed

calculation shows
that the
dependence of the
period on θ0 is
very weak.

Important remark about graphical data: Suppose you were to obtain experi-
mental data to test the pendulum result, equation (8). You would measure
the period τ for different lengths `, while maintaining the same initial angle
θ0. You would then plot τ versus `. The scaling result (8) predicts that on a
log-log plot the data will be linear! – this is a simple and useful result. Also, Often the simple

idea of making
log-log plots of
experimental
results yields
valuable
information!
From (8) then
log τ =
1
2

log ` + constant,
which means that
a plot of log τ
versus log ` is
linear with slope
1/2.

1Remember to distinguish dimensions such as length (L), mass (M) and time (T ) from
specific units used for their measurement, such as lengths being reported in inches, feet,
centimeters or meters. An angle is defined as the ratio of arclength to the radius of a
circular arc, so angles (e.g. radians) have no dimensions.
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it is one of the reasons that the mathematical form of power-law responses is
relatively easy to check and seek in experimental data. For one real example,
see problem 28 at the end of these notes.

Exercise: Solve (6) using the small angle approximation.

Exercise: If the initial condition has dθ
dt

(0) = Ω0, then using dimensional
reasoning, what can you conclude about the functional form of the pe-
riod? Using the small angle approximation, solve this new problem and
confirm your answer.

1.3 The Buckingham-Pi (Π) Theorem

We might now expect that it is always possible to introduce dimensionless
variables so that the description of a problem is independent of the specific units
of measurement. A quantitative statement of the number of dimensionless
variables (or groups) is expressed by the Buckingham-Pi Theorem:

Buckingham-Pi Theorem: Given n variables that are expressible in
terms of r independent dimensions, then there are no more than n − r
independent dimensionless variables.

Remark: It is common when discussing the subject in general terms to
denote the different dimensionless variables as Π1, Π2, etc., hence the name
of the theorem given by Buckingham. It is doubtful I will ever use this Π
notation since I have never found it really helpful.

Typically in mechanics problems, the independent dimensions are mass
(M), length (L) and time (T ) so r = 3. If temperature is involved in the
problem formulation, then r = 4 and if electrical effects (i.e. charge) are
included then r = 5.

Let’s reconsider one of the example above. For the oscillations of the
simple pendulum, the period τ involves {`, g, m, θ0}. Hence, because an angle
(being defined as the ratio of two lengths) is dimensionless, we see that n = 5
and r = 3, so there are two dimensionless groups. This conclusion is consistent

with the answer in the form τ/
√

`/g = f(θ0).

Exercise: Reconsider the example discussed in section 1.2.1. What quantities
are involved in the problem statement? Explain why the form of the answer
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given is consistent with the Buckingham-Pi Theorem.2

1.4 A series of examples illustrating (informally) di-
mensional analysis for arriving at the structure of
answers

We now provide a series of examples where it is possible to arrive at the
form of the answer without writing down any detailed equations. Rather, all
that is required is to make a list of the variables and physical constants that
appear in the problem statement and problem description and then demand
that the final answer be dimensionally related to this set of parameters. We
will arrive at most of the answers to within a multiplicative (dimensionless)
constant, which hopefully will impress you since we will not have written down
any detailed equations. Nevertheless, the only way to determine the unknown
constants in the examples below is to either solve some detailed equation or do
a single experiment. We will later explain more systematically how to obtain
the dimensionless characterization implied by the Buckingham-Pi Theorem in
a more systematic way.

(i) A ball of mass m is dropped from a height h and falls due to gravity g.
Determine the time τ to contact the ground.

Answer: We expect that the time τ can at most depend on m,h and g.
It is common to express the potential functional dependence as

τ = f(m,h, g) (9a)

dimensions: T M L L/T 2 (9b)

Note that the Buckingham-Pi result yields 4 − 3 = 1 dimensionless pa-
rameter for the problem. What is this parameter? Since the time τ does
not have dimensions involving mass, then m can’t appear in the answer
since it is the only parameter in the above list with dimensions involving
mass. Because the only parameters remaining are h and g, we note that

the only way to obtain a result with dimensions of time is
√

h/g. Hence,
we see that the answer must have the form NOTE: This

result is ONE
dimensionless
parameter.

2Answer: Recall the first example problem that involved the final horizontal distance
obtained by a projectile released with velocity v0 from a height h above the ground. In
that problem there were 5 variables and 3 independent dimensions (mass, length and time),
so from the Buckingham-Pi Theorem we should expect that the problem solution should
involve 5 − 3 = 2 dimensionless groups. Indeed, that is the case as we see in equations (3)
or (4).
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τ = c1

√
h/g or

τ√
h/g

= c1 , (10)

where c1 is a (dimensionless) constant. The ratio τ/
√

h/g is dimension-
less and represent the ratio of the actual fall time to the “natural time

scale”,
√

h/g in the problem statement.

(ii) A ball of mass m is shot vertically in the air with initial velocity v0.
The gravitational acceleration is g. Determine the maximum height h
to which the ball can rise.

Answer: The solution form is potentially

h = f(m, v0, g) (11)

Again, the Buckingham-Pi Theorem yields 4 − 3 = 1 dimensionless pa-
rameter. Then, with dimensional considerations we conclude there can
be no dependence on m. Since the only way to obtain dimensions of
length is v2

0/g (note that g has dimensions L/T 2, so we need the v2
0 in

the numerator to eliminate dependence on time), we conclude

h = c2v
2
0/g or

h

v2
0/g

= c2 , (12)

where c2 is a (dimensionless) constant.

(iii) Drive at speed v along a circle of radius R. Determine the acceleration
a.

Answer: Since a = f(v, R), then elementary dimensional inspection
yields a = c3v

2/R. Also, we should reiterate that this form of argu-
ment does not determine the constant c3, nor the sign of the acceleration
(whether it is directed inwards or outwards).

(iv) Reconsider the example from section 1.2.1. We are interested in the final
horizontal distance xfinal achieved by the object projected horizontally
from height h. Read the problem statement. Clearly, if the only variables
involved in the solution are those mentioned in the problem statement,
then at most we can expect

xfinal = f( m︸︷︷︸
M

, h︸︷︷︸
L

, v0︸︷︷︸
L
T

, g︸︷︷︸
L

T2

) (13)
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Figure 3: The Theorem of Pythagoras.

The Buckingham-Pi result yields the expectation that there should be
5 − 3 = 2 dimensionless parameters, as we in fact obtained by a direct
calculation earlier. To continue with a purely dimensional characteri-
zation, in this case, we can first conclude that the final result must be
independent of m, since xfinal has dimensions of length (L) and there are
no other variables with dimensions of mass (M). So, we can expect the
dependence of xfinal on the other variables to be

xfinal = f(h, v0, g) (14)

Now if we measure xfinal relative to h then the only nondimensional
description is

xfinal

h
= f1

(
v2

0

gh

)
, (15)

where f1 is some function (unknown at this stage). This result is precisely
the functional form of equation (4) that was obtained by obtaining the
exact solution of the trajectory equations. Nevertheless, even without
knowing what is the precise functional form of the solution (i.e what is
f1 in equation 15), we note that simply arriving at the dimensionless
form (15) is a significant step forward. For example, we can conclude
that doubling v0 has the same effect as decreasing g by a factor of four.
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(v) The Theorem of Pythagoras: We have all learned that for a right triangle
with hypotenuse c and sides a and b that a2 + b2 = c2. One elementary
proof is indicated in Figure 3 and takes advantage of a clever decompo-
sition of a large square (area=(a = b)2) into a smaller square (area=c2)
and four triangles (area=4.1

2
ab), where the area of a triangle is half the

product of the base and the height. Apparently, this simple proof was
known to the Babylonians long ago. On the other hand we can prove
this theorem using dimensional analysis (and a little bit of geometry),
which is clever and surprising!

In order to proceed with a dimensional argument we consider a generic
right triangle. It is well known from elementary geometry that given one A critical

examination will
show that this is
a key assumption.

sides and one of the two acute angles, then everything is known about the
right triangle. Let us always choose the hypotentuse c and the smallest
of the two acute angles, call it φ, as the basic variables. Now consider
the area A of the triangle. We expect A(c, φ). Clearly, by dimensional
analysis

area = A = c2f(φ), (16)

where the function f(φ) is not known at this time (indeed, we do not
need to know it as you will next see).

Next, subdivide the right triangle into two smaller right triangles, one
with hypotenuse a and smallest acute angle φ, and the other with hy-
potenuse b and smallest acute angle φ (verify these statements). But
we just learned that the area of these two triangles are, respectively,
a2f(φ) + b2f(φ). Summing the areas we find A = c2f(φ) = a2f(φ) +
b2f(φ) or c2 = a2+b2. We have proved the Theorem of Pythagoras using
dimensional analysis!

(vi) The energy of the atomic bomb: There is a famous, but true, story of
an English physicist named G.I. Taylor, who in about 1947 deduced the
approximate energy of the atomic bomb, which at the time was consid-
ered a secret known only to top-level officials in the US government. The
simplified version of this deduction can be explained using dimensional
analysis!

As the story goes, Taylor used a publicly available photograph of the
nuclear explosion, published in Life Magazine, at the time a leading
international publication, to complete his estimate. His letter to US
officials inquiring as to the accuracy of his estimate was undoubtedly
received with shock. Apparently, he was admonished for publishing his
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Figure 4: A photograph showing the nearly spherical explosion cloud from an
atomic bomb.

results even though they were based on publically available information!3

As for the analysis, we consider a spherical explosion of energy E into
a medium (air) of density ρ (see figure 4). We ask for the radius r as a
function of time t. Dimensional considerations (based on this admittedly
simplistic problem characterization) then yield

r = f(t, E, ρ). (17)

Since the dimensions of [E] = ML2/T 2 and [ρ] = M/L3, then [E/ρ] =
L5/T 2. We are then lead to the conclusion

r = c
(
Et2/ρ

)1/5
. (18)

The scaling with the two-fifths power of time is in near perfect agreement
with the data and the constant c can be deduced from graphing the
experimental data. From this result, Taylor was able to estimate the
energy E of the bomb.

A modern day applications: A few years ago there was a massive ex-
plosion, which killed 22 people, at a fireworks warehouse in the city of

3G.K. Batchelor, The Life and Legacy of G.I. Taylor, Cambridge University Press, 1996.
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Figure 5: Left: Mass on a spring. Right: Mass-spring-damper system.

Enschede in the Netherlands. Apparently, in the resulting court case
there was a question of the quantity of fireworks in the warehouse. It
turns out that an amateur photographer had been videoing the city at
the time of the accident, and the film and the “Taylor bomb calculation”
were used to help determine who was actually telling the truth!

1.5 Mass-spring systems studied using dimensional rea-
soning

1.5.1 One more view of elementary dimensional analysis: Motion
of a mass on a spring

Let us examine in different ways the solution of the simple harmonic oscillator
of a mass m connected to a spring (spring constant k).

What are the units of k? Again, using M ,
L, T as indicating
dimensions.Answer: force = −kx ⇒ [force] = ML

T 2 ⇒ [k] = [F ]
[x]

= M
T 2 .

Now we know that this system undergoes (possibly damped) oscillations.
What is the typical period of the oscillation? In the case of damped vibrations,
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what is the typical time over which the damping occurs? We refer to both
questions as asking about time scales. In the previous sentences we use the
word “typical” to emphasize that we are obtaining a good estimate of the
time of a physical process. We now attempt to answer the questions just
posed about time scales.

The differential equation for x(t): Let x(t) denote the displacement of
the spring from its equilibrium length. x(t) satisfies the differential equation

m
d2x

dt2
=

∑
forces = −kx ⇒ m

d2x

dt2
+ kx = 0 . (19)

We typically wish to solve this equation subject to initial conditions

displacement : x(0) = x0 and velocity :
dx

dt
(0) = v0 . (20)

For the discussion that follows, we will choose v0 = 0, so the spring begins at
rest with displacement (from equilibrium) x0.

Four ways to look at the idea of a characteristic time:

(i) What is the approximate period of the oscillation?

Answer by dimensional arguments alone: Let’s denote the period as τ .
Clearly the period τ must depend on the parameters in the problem.
Therefore, if we first list the constants involved, we expect that τ =
f(m, k, x0) as m, k and x0 are the only three physical constants that
appear in the introduction above. Below we note the dimensions of each
of the quantities:

τ = f(m, k, x0) (21)

T M M
T 2 L

In order to obtain the period, which has dimensions of time, we see that

we must eliminate the mass and so
√

m/k has dimensions of time. Thus
we write

τ ∝ (m/k)1/2 or τ = (const) (m/k)1/2 . (22)

We have really done very little work but have arrived at a useful result.
Important reminder: This type of inspectional (dimensional) analysis
can not determine the multiplicative constant (in this case 2π if we refer
to the period of the motion) in the equation.
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(ii) Of course, for the initial conditions x(0) = x0 and ẋ(0) = 0, we can solve
equation (19) exactly. You should verify that the solution is

x(t) = x0 cos
[
(k/m)1/2 t

]
. (23)

From this exact solution we deduce that the exact period of the motion
is 2π (m/k)1/2. It is thus natural to speak of the (undamped) spring

mass system as having a ‘characteristic time scale’
√

m/k since this is

the typical order of magnitude over which x(t) changes (e.g. from its
maximum to its minimum).

(iii) Another look at scaling by beginning with the governing equation. Con-
sider the mass-spring differential equation:

m
d2x

dt2
+ kx = 0 . (24)

Let’s only think about the order of magnitude of the terms in equa-
tion (24), and indicate their dimensions. We observe that when typical
displacements, say ∆x, occur on a time scale τ , then the dimensional
estimates of each of the terms in equation(24) are

m∆x

τ 2
, k∆x

︸ ︷︷ ︸
compare

= 0 ⇒ τ 2 ≈ m/k ⇒ again τ ≈ (m/k)1/2

(25)
Since equation (24) is linear in the displacement x(t), then ∆x does not
enter the final estimate in (25).

(iv) Nondimensionalize the equation: It is possible to write (19) so that all
the dimensional variables (and even the multiplicative constants) are
eliminated. Let us define new, dimensionless variables according to

X = x/x0 , T = t/
√

m/k (26)

Then, substituting into (24) and (20) we obtain an equation for X(T ): It is important
that you feel
comfortable with
beginning with
equation (24) and
arriving at
equation (27).

d2X

dT 2
+ X = 0 , X(0) = 1 ,

dX

dT
(0) = 0 . (27)

If you are to solve or plot the solution to this equation you will see that
Please do not be
alarmed by this
language. It is
simply useful in
more complicated
problems for
expressing ideas
related to
approximate
answers of
complex
problems.

the magnitude of (changes in) X is less than or equal to 1 (we typically
write O(1), and pronounce the “big Oh” as “order”), when changes of T
are O(1).
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1.5.2 A mass-spring system with damping

We have emphasized above that it is useful to express solutions in dimension-
less form. We will give one additional example of this style of thinking applied
to a differential equation familiar from your previous mathematics and physics
courses.

Many basic models (biological, chemical, electrical, mechanical, thermal,
physiological, acoustic) involve second-order, constant coefficient ordinary dif-
ferential equations (ODEs). For example, a mass-spring oscillator with linear
damping (coefficient ζ) has a displacement from equilibrium x(t) that is de-
scribed by the equation

m
d2x

dt2
+ ζ

dx

dt
+ kx = 0 . (28)

Let us assume that this equation is to be solved with the two initial conditions
x(0) = x0,

dx
dt

(0) = 0.

Upon a first inspection of this problem you might think that understand-
ing the possible solutions requires independent specification of four physical
constants: m, ζ, k, and x0. In fact, this is not true: the structure of the
solution only involves one (dimensionless) parameter which is the ratio of the
physical constants.

Making a differential equation dimensionless – the steps involved in rescaling
variables: Let X = x/x0 and T = t/tc, where tc is a constant, with dimen-
sions of time, which is to be determined. Substituting into equation (28) and
rearranging slightly gives Verify that you

can follow this
change of
variables in the
differential
equation. It is a
very common
step.

m

kt2c

d2X

dT 2
+

ζ

ktc

dX

dT
+ X = 0 , with X(0) = 1,

dX

dT
(0) = 0. (29)

To make the coefficients of the equation simple, we see that it is convenient to

choose tc =
√

m/k in which case the equation is

d2X

dT 2
+

ζ√
mk︸ ︷︷ ︸

= Λ, dimensionless
parameter

dX

dT
+X = 0 , with X(0) = 1,

dX

dT
(0) = 0. (30)

Therefore, the basic physical problem for determining X(T ) only involves ONE
ratio of physical constants, Λ = ζ/

√
mk. The form of this parameter makes
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clear that increasing ζ by a factor of two is equivalent to increasing m or k by
a factor of four.

In this example we considered the oscillations of a damped spring-mass
system. Dimensional considerations have that the solution for x(t; m, ζ, k, x0),
which involves 6 variables, should require knowledge of 6−3 = 3 dimensionless
groups. This is exactly the meaning of obtaining the dimensionless solution,
expressed functionally as X(T ; Λ), by solving equation (28).

Exercise: Consider instead equation (28) subject to the initial conditions
x(0) = 0, dx

dt
(0) = v0. Put the problem statement in dimensionless form.
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1.6 Bending of a beam: An example of rescaling vari-
ables and equations (you do not have to know the phys-
ical situation to appreciate the steps involved)

As a further example of rescaling equations, consider the equation for the
transverse oscillations of a thin elastic beam of length `. If u(x, t) is the
transverse displacement and ρ the mass/length (assumed constant), with x
the distance along the beam and t time, then you may take it as given that
u(x, t) satisfies the equation

ρ
∂2u

∂t2
+ B

∂4u

∂x4
= 0 . (31)

The constant B is known as the bending modulus. By inspection you should
note that [B/ρ] = L4/T . In fact, equation (31) is only valid in the limit that
the deflections are small, which here means that um/` ¿ 1. You can consider
um/` as a dimensionless parameter.

Typical boundary conditions for t > 0 are Since the
equation has four
spatial
derivatives, we
need to specify
four boundary
conditions.

fixed end: u(0, t) = 0; zero slope:
∂u

∂x
(0, t) = 0(32a)

zero force and torque at x = `:
∂2u

∂x2
(`, t) = 0 ,

∂3u

∂x3
(`, t) = 0 . (32b)

Also, we need two initial conditions and we consider an initial deformation: Two initial
conditions are
needed since the
equation involves
two time
derivatives.

parabolic initial shape: u(x, 0) = um(x/`)2 , zero initial velocity:
∂u

∂t
(x, 0) = 0 .

(33)
With this description um is the maximum displacement of the free end (see
sketch). Let’s now answer a few questions.

(a) Using the Buckingham-Pi theorem, how many dimensionless groups do
you expect when you solve for u(x, t).

Answer: We seek u(x, t; ρ, B, um, `) so we expect n − r = 7 − 3 = 4
dimensionless variables. Note that if you had initially remarked that the
equation only involves B/ρ, whose dimensions only involve length and
time, then you would write u(x, t; B/ρ, um, `), and as the list of variables
does NOT involve mass, we would conclude that here there are only two
independent dimensions (length and time; r = 2) in the variable set, so
n− r = 6− 2 = 4, as before.
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(b) Nondimensionalize (31) and the boundary and initial conditions. In this
direct way, verify your answer to (a).

Answer: Let X = x/`, T = t/tc, and U = u/um. Here it seems natural
to “measure” x and u relative to the “typical” scales in the problem
statement, which, in this case are, respectively, the length of the beam
` and the maximum initial displacement um. The “time scale” tc we
shall next determine. Substitute these new variables into the problem
statement to obtain an equation for U(T ). After some algebra we find

∂2U

∂T 2
+

Bt2c
ρ`4

∂4U

∂X4
= 0 (34)

Therefore, it is natural to choose tc = `2 (ρ/B)1/2. This time tc is essen-
tially the period for the oscillation of the beam.We have learned from
these simple steps that if you double the length of the beam the period
is four times as long. The complete dimensionless problem statement is
then:

∂2U

∂T 2
+

∂4U

∂X4
= 0, (35a)

U(0, T ) = 0;
∂U

∂X
(0, t) = 0,

∂2U

∂X2
(1, T ) = 0,

∂3U

∂X3
(1, T ) = 0(35b)

U(X, 0) = X2,
∂U

∂T
(X, 0) = 0. (35c)

Indeed, we now see that ALL the variables have been scaled out of the
problem, and we need now determine U(X,T ). This result corresponds
to a relationship among THREE dimensionless variables, U,X and T .
Since equation (31) required um/` ¿ 1 (see brief discussion above) then
um/` is one dimensionless parameter and U,X, and T are three oth-
ers, giving a total of four dimensionless parameters, which is what we
expected based on the answer to (a).

24



1.7 A formal approach to dimensional analysis

As emphasized above, the basic feature of dimensional consistency of equations
places constraints on the possible functional forms allowed for the answer. Al-
though in the simplest problems, the functional form can be guessed, problems
with many variables generally require a more systematic approach, which we
outline here. There are two main steps: First we identify (list) all variables
that appear in the problem statement, and second we organize these variables
into dimensionless ratios by sequential elimination of dimensions (M , L and
T in the case of the usual mechanics problem).

We give two examples here using the projectile problem and mass-spring-
damper problem mentioned above. The approach shown here is purely formal,
and not really very physical, so we will often find that while it is a useful first
step, in more complicated problems some rearrangement of the final results
can be helpful.

1.7.1 The projectile problem revisited

We recall the example of a projectile of mass m fired horizontally at speed v0

from an initial vertical height h. We seek the final horizontal displacement
when the projectile has hit the ground and expect the functional dependence

xfinal = f(m,h, v0, g) . (36)

We next make a table of all of the variables distinguishing the variable
in which we are interested from the other independent variables or physical
constants or other parameters that appear in the problem statement. By each
variable we provide in parentheses the dimensions. We then systematically
eliminate one dimension at a time until all variables are dimensionless.

Thus, we have

x (L) m (M) h (L) v0 (L/T ) g (L/T 2) remark
x (L) - h (L) v0 (L/T ) g (L/T 2) mass can be eliminated
x/h - - v0/h (T−1) g/h (T−2) scale out h

x/h - - - gh
v2
0

simplify above as [(v0/h)] = T−1]

The last line indicate that there are TWO dimensionless groups: x/h
and gh/v2

0. This approach does NOT provide the functional relation between
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these two independent dimensionless groups, so we can simply conclude

x

h
= f

(
gh

v2
0

)
. (37)

It is VERY IMPORTANT to recognize that you do not know the function
f from this kind of approach, so we do not know everything. However, you
should recognize that the problem has been significantly simplified and you
have learned some quantitative information.

1.7.2 The mass-spring-damper problem revisited

This example is similar to the previous one. We first have

x = f(t, x0, k,m, ζ) . (38)

The Buckingham-Pi theorem allows us to expect 6 − 3 = 3 dimensionless
variables.

x (L) t (T ) x0 (L) k (M/T 2) m (M) ζ (M/T ) remark
x/x0 t (T ) - k (M/T 2) m (M) ζ (M/T ) length can be scaled out
x/x0 t (T ) - k/m (T−2) - ζ/m (T−1) scale out m

x/x0 t/
√

m/k - - - ζ√
mk

simplify above as [
√

k/m] = T−1]

The last line indicates that there are THREE dimensionless parameters.
We do not know the functional relationships among these three objects, so we
conclude

X =
x

x0

= f


 t√

m/k
,

ζ√
mk


 . (39)
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1.8 Extensions to account for electrical charge and ther-
mal effects

There are of course other physical effects to take into account when studying
nature. For example, there are electrical and magnetic interactions. Lets
consider electrical effects. In introductory physics, you would have seen the
basic ideas introduced in two ways:

(i) The force F between two charges q1 and q2 separated by a distance r,
with er the unit vector along the line of separation, is

F =
q1q2er

4πε0r2
(40)

The physical quantity ε0 is referred to as the permittivity of free space. ε0 = 8.85 C2/Jm

(ii) Maxwell’s equation for electrostatics (no moving charges) states that the
electric field E and the charge density ρe (charge per volume) are related
by You should be

familiar with the
notation of the
divergence of a
vector field, ∇ ·E.

∇ · E =
ρe

ε0

(41)

In order to discuss electrical phenomenon we must then introduce a dimension
of charge, which we shall denote Q. In the Systeme Internationale (SI) the
fundamental unit of charge is the Coulomb and for example the charge on an
electron is 1.6× 10−19 C. Using (i) and the dimensions of force [F ] = ML/T 2,
we observe that the dimensions of the electrical permittivity are

[ε0] = Q2T 2/ML3 . (42)

In order to discuss many physical phenomenon it is then necessary to
have as fundamental dimensions the list M, L, T and Q.

Exercise: Recall that the force F on a charge q in an electrical field E is
F = qE. Use this fact and equation (41) to show that ε0 has the dimensions
given in (42).

1.8.1 An example with charge as an independent dimension

Consider the energy E of an electron in orbit about an atomic nucleus. The
electron has mass m and charge e. For such subatomic particles it is necessary
to use ideas from quantum mechanics which introduces Planck’s constant h.
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Note that the dimensions of Planck’s constant can be easily deduced from
the fundamental relation for electromagnetic effects that E = hν, where ν is
the frequency (you should recall this formula from introductory chemistry and
physics); so [h] = ML2/T .

The above problem statement can now be expressed functionally in terms
of the given variables:

E = f(m, e, ε0, h) (43)

which is a relation among 5 variables. As there are 4 independent dimensions
(M,L, T,Q), by the Buckingham-Pi theorem we expect 5−4 = 1 dimensionless
group. We can now determine the form of this single dimensionless group
using systematic elimination of the basic dimensions, as in the matrix method
introduced earlier.

Since the only variables involving charge are ε0 and e we see that the
final result must involve ε0/e

2. Note that [ε0/e
2] = T 2/ML3. So, in order to

eliminate mass as a variable we can note that the functional form must be

E

m︸︷︷︸
L2/T 2

= f




mε0

e2︸ ︷︷ ︸
T 2/L3

,
h

m︸︷︷︸
L2/T


 . (44)

Elimination of time as a variable then allows us to conclude

Em

h2︸ ︷︷ ︸
L−2

= f




ε0h
2

me2︸ ︷︷ ︸
L


 . (45)

Both groups above have dimensions related only to length so we conclude

Em

h2
=

c1

(ε0h2/me2)2 ⇒ E = c1
me4

ε2
0h

2
, (46)

where c1 is a pure number. This result only involves one dimensionless param-
eter because we can express it as E

me4/ε20h2 = constant.

1.8.2 Temperature

As a final remark if problems are considered that involve temperature or ther-
mal energy, then it is necessary to introduce a dimension for temperature. It
is common to denote this dimension as Θ. The SI unit for temperature is the
Kelvin (K). We shall discuss this topic more when we begin heat and mass
transfer.
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1.9 Exercises

Using dimensional analysis answer the following questions.

0. In statistical physics and kinetic theory Boltzmann’s constant kB is
the fundamental parameter that enters the discussion via the equation
kBT = energy, where T is the absolute temperature. What are the
dimensions of kB?

1. A ball of mass m is thrown into the air with initial velocity v at an
angle θ0 from the horizontal. Find the functional form for the horizontal
distance travelled and the time the ball is in the air.

2. Given the coupled ODEs, involving x(t), y(t) and the constants a, b, c
and x0,

dx

dt
= ax− bx3y and

dy

dt
= cx with x(0) = x0 , y(0) = 0 , (47)

nondimensionalize these equations by appropriate choices of scales for t,
x and y. Clearly state the dimensionless equations and the dimensionless
parameters that appear. You do not have to solve these equations.

3. The it Casimir effect is a quantum mechanical phenomenon that refers to
a force between two uncharged adjacent surfaces in vacuum.4 This effect
arises owing to so-called vacuum fluctuations that produce fluctuations
in the electric field. In order to explain this phenomenon it is necessary
to use quantum mechanics (which introduces Planck’s constant h̄) and
electrodynamics (which introduces the speed of light c). Now, consider
two parallel plates separated by a distance d. Determine the pressure p
in this system (i.e. it is common to refer to the pressure or force/area
acting on the plates rather than the force itself). In other words, using
dimensional analysis we consider p = f(h̄, c, d). Find a formula for p.

4. Consider an undamped spring-mass system where the restoring force
is nonlinear in displacement x according to F = −kx3. If the initial
amplitude of the system is a0, what is a typical time for the system’s
response?

4This effect was predicted by the Dutch physicist Hendrick Casimir in 1948 and was
measured in 1986 by Steven Lamoreaux. For a recent article in Physics World on the
Casimir effect see http://physicsweb.org/article/world/15/9/6.
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5. Bouncing of an elastic ball: A ball of radius R, density ρ and elastic
modulus E bounces off a table. For simplicity we assume the table
is made of a material of the same density and elastic modulus as the
ball. Assume that the sphere has velocity V when it contacts the table.
Determine the functional form of the contact time τ , i.e. the time the
ball remains in contact with the table. State clearly how the contact time
varies with the radius of the ball. Hint: According to the Buckingham-Pi
Theorem, how many dimensionless variables should you expect?

6. Superstring theory: A modern trend in theoretical physics has been the
development of superstring theory, which seeks to provide a description
of the elementary particles (quarks, etc.) and the forces that act between
them (e.g. J.H. Schwarz Physics Today, 1987). Therefore, it is necessary
to bring together electromagnetism, quantum mechanics and gravitation.
These three aspects of the universe are characterized by the physical
constants c, h̄ and G, i.e. the speed of light, Planck’s constant and the
gravitational constant, respectively. Look up or otherwise determine
the dimensions of these three constants. Using dimensional analysis
determine the characteristic length, mass and time scales at which these
three physical phenomena act together.

6. An object of mass m is on a string of length L and travels in a horizontal
plane at speed v in a circle of radius R. Determine the angle θ the string
makes with the vertical and the tension T (a force) in the string. Note
that sin θ = R/L.

Solution: θ = f1(m, g, L, v) and T = f2(m, v, L, g). Now use dimensional
analysis.

7. A particle of mass m falls from a height h along a curved path. At the
end of the path is a spring with spring constant k. Determine the form
for the compression of the spring ∆x.

8. Newton’s law of gravitational attraction of two masses m1 and m2,
with center to center distance r, states that the attractive force F =
Gm1m2/r

2. What are the dimensions of G?

9. A planet of mass m moves around the sun (mass M À m) along an
elliptical path with average radius R (in practice, the trajectory is only
a little different from a circle). How is period T for one rotation related
to R, G and any other variables (the dimensions of G are determined in
problem 8)? This is one of Kepler’s three laws.
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10. N springs, some with spring constant k1 and the rest with spring constant
k2, form a complicated network. Determine the functional form of the
effective spring constant keff for the network.

11. How much potential energy is stored in a spring (spring constant k) that
has been compressed a distance δx?

12. One important applications area of fluid mechanics is the efficient mixing
of materials. For example, imagine trying to mix a blob of blue dye in
water. An important question to then address is the increase of the
interfacial area between the dyed material and the liquid as the time for
mixing increases.

So, consider a sphere of radius a, which is being stretched at a rate γ̇; note
that [γ̇] = time−1. It should be familiar from your calculus course that
a sphere has the smallest surface area for a given volume. So, stretching
will increase the surface area. After time t estimate the change in the
surface area. Hint: List the variables in the problem.

13. A spring has a nonlinear damping term:

mẍ + ζ|ẋ|ẋ + kx = 0 (48)

Find the dimensions of ζ and estimate the damping rate for the spring-
mass system.

14. Euler’s disk: Place a coin on edge and spin it. After some time it is
spinning with a very small angle α relative to the surface and you can
observe the rotation frequency (or vibration frequency) Ω increase as the
angle decreases until contact occurs. The motion depends on the mass
m of the disk, gravity g, the disk radius a and the inclination angle α.

(a) In the absence of any frictional effects (damping), Ω is related to
α. Find the form of the relationship using dimensional arguments.

(b) The motion eventually stops because of damping. Assume that the
origin of the damping is from the viscosity µ of air. Viscosity has
dimensions M/L/T. Using dimensional arguments determine the
typical damping time.

15. Coiling rope:5 A rope of linear density ρ (mass/length), radius a and
stiffness or Young’s modulus E (dimensions of force/area) is fed at speed

5Professor L. Mahadevan of DEAS has written a very nice paper on this subject!
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v from a distance h above the ground. It is a common experience that
such a rope tends to coil into a pile with a typical radius R. Denote
the associated rate of coiling as ω. Suppose that you seek R or ω as a
function of the other parameters in the problem statement (remember
to include the gravitational constant g).

Use the Buckingham-Pi theorem to determine the number of indepen-
dent dimensionless parameters. Then, find the complete dimensionless
charaterization of the problem.

17. Hooke’s law for a linear elastic solid states that stress σ is proportional
to strain ε. For a bar pulled along its axis, the strain is defined as the
change in length relative to the initial length, so σ = Eε, where E is
called Young’s modulus. Determine the dimensions of Young’s modulus
E.

18. The sound speed c in a material arises due to compressibility, or how
the density ρ changes with pressure p. In a gas we expect c = f(p, ρ, γ)
where γ = cp/cv, which is the ratio of specific heats. Using dimensional
analysis find the functional form of c.

18. The Casimir effect was discussed briefly in problem 3. There is analogous
effect when a colloidal suspension is placed between two plates a distance
d apart. In a colloidal system, the particles undergo Brownian motion
where the characteristic thermal energy is kBT , where kB is Boltzmann’s
constant. The two plates experience a force which is characterized in
terms of the pressure p. Find p(kBT, d) using dimensional analysis.

19. From playing with soap films and soap bubbles, you are familiar with
surface tension even if you have not tried to do problem solving with it.
Surface tension γ characterizes the energy/area required to deform an
interface. Equivalently, it can be considered the force/length that acts
along a boundary. Determine the dimensions of γ.

For problems 20 and 21, read Rayleigh’s article titled “The Principle of
Similitude”, which is reproduced in the notes following the appendix on
dimensional analysis.

20. Justify Rayleigh’s remark (page 1, second column) “The frequency of
vibration of a globe of liquid, vibrating in any of its modes under gravi-
tation, is independent of the diameter and directly as the square root of
the density.”
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21. Justify Rayleigh’s remark “The frequency of vibration of a drop of liq-
uid, vibrating under capillary force, is directly as the square root of the
capillary tension and inversely as the square root of the density and as
the 3/2 power of the diameter.”

Remark: The dimensions of surface tension are discussed in problem 19.

Note: For problems (22-25), which involve charge, we need the dimension
of the electric charge [Q].

22. Use Gauss’s law ∇ · E = ρe/ε0, where ρe is the charge/volume and the
expression for the force on a charge to determine the dimensions of the
permittivity ε0.

23. Consider the typical frequency of radiation f emitted when an electron
passes from one energy state to another. Note that [f ] = T−1 and so
seek f = F (m, e, ε0, h) where m is the mass of the electron, which has
charge e and h is Planck’s constant.

24. Niels Bohr proposed a model for the atom where electrons orbit the
nucleus and are confined to specific radial positions, which depend on
the energy of the electron. For the hydrogen atom, which has only one
electron, the radial distance at which the electron orbits the nucleus
is referred to as the Bohr radius (often denoted a0). We expect a0 to
depend on the mass (me) and charge (e) of the electron as well as Planck’s
constant (h) and ε. Using dimensional analysis, determine the functional
form for a0.

25. In some applications, such as versions of ink jet printing, small droplets
are charged so that they can be manipulated with an external electric
field. However, it is also known that if the total charge, call it QD,
on the drop is too large, surface tension γ cannot maintain the drop in
a spherical form – instead the droplet shatters (it basically explodes).
Determine the functional form for the maximum stable radius of a liquid
drop R of charge QD.

Hint: What variable list should you start with?

Note: This critical radius (or the associated charge) is known as the
Rayleigh limit.

26. Consider an elastic circular column of radius a. Denote the shear mod-
ulus (same dimensions as the elastic modulus E) as G. When a torque
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τ is applied, the column twists an amount angular amount θ per unit
length; denote this value per length by θ`. What are the dimensions of
torque? What can you conclude by dimensional analysis?

Hint: Using the Buckingham-Pi theorem, how many dimensionless vari-
ables do you expect?

27. Read the handout“Gulliver was a bad biologist” by Francis Moog (Sci-
entific American, 1948), which is attached with the articles on size and
scale. The issue of “scale” is crucially important in many areas of biology
since if an organism has typical linear dimension L, then we expect the
surface area of the object to increase proportional to L2 and the volume
(or mass) to increase as L3.

Identify as many scaling type considerations as can in Moog’s article.
Do you know any more examples in “Gulliver’s Travels”?

Consider the example of the frequency f of your voice. In fact, the
vocal cords work similar to a stretched string. So consider a string of
density ρ, length `, and cross-sectional area A, which is pulled by a force
F . The linear density ρA is the important physical quantity when the
string oscillates and the frequency of the transverse oscillations clearly
depend on F (e.g. think of a guitar string). Show that the frequency of
oscillation then must have the form f ∝ `−1. Is your result consistent
or inconsistent with the discussion in Moog’s article, where (p. 3) it is
stated that “pitch ... varies inversely with the linear dimensions”.

28. Consider the case of a bouncing drop of liquid. A contribution to the
journal Nature illustrates that a liquid drop, of initial radius R, can
“bounce” when fired at a surface with a velocity V (the article is at-
tached). The pictures make clear that large deformations take place
during and after the contact with the surface. Suppose that the droplet
is characterized by the surface tension γ and the density ρ (we neglect
viscous influences for this short time motion). (i) Use dimensional anal-
ysis to determine the variation of the contact time τ with the variables
in the problem. (ii) The data shows that τ is independent of velocity.
Hence, conclude why figure 2b in the Nature article, which is a log-log
plot of the contact time versus radius, has a slope of 3/2.

29. A block of mass m is pushed with initial velocity v0 along a horizontal
plane. The frictional force resisting sliding is proportional to speed,
Ffriction = −ζv, where v is the instantaneous speed of the block and ζ
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Surface phenomena

Contact time of a
bouncing drop

When a liquid drop lands on a solid
surface without wetting it, it
bounces with remarkable elasticity1–3.

Here we measure how long the drop
remains in contact with the solid during 
the shock, a problem that was consid-
ered by Hertz4 for a bouncing ball. Our 
findings could help to quantify the 
efficiency of water-repellent surfaces
(super-hydrophobic solids5) and to improve
water-cooling of hot solids, which is limited
by the rebounding of drops6 as well as by
temperature effects.

The way in which a water drop of radius
R deforms during its impact with a highly
hydrophobic solid depends mainly on its
impinging velocity, V. The Weber number,
W4rV 2R/g, compares the kinetic and 
surface energies of the drop, where r and g
are the liquid density and surface tension,
respectively. The greater the value of W, 
the larger are the deformations that occur
during the impact (Fig. 1).

High-speed photography (Fig. 1) enabled
us to measure the drop’s contact time, t.
The frame rate could be greater than 104 Hz,

allowing precise measurements of t, which
we found to be in the range 1–10 ms. As the
impact is mainly inertial (with a restitution
coefficient2 as great as 0.91), t is expected to
be a function of only R, V, r and g, and thus
to vary as R/V.f(W ). For a Hertz shock, for
example, the maximum vertical deforma-
tion, d, scales as R(r2V 4/E 2)1/5, where E is
the Young’s modulus of the ball7. Taking a
drop’s Laplace pressure, E<g/R, as an
equivalent modulus and noting that
t<d/V, we find for a Hertz drop that
f(W)~W 2/5 and that the contact time varies
as V 11/5 and R7/5.

Figure 2a shows that the contact time
does not depend on the impact velocity 
over a wide range of velocities (20–230 
cm s11), although both the deformation
amplitude and the details of the intermediate
stages largely depend on it. This is similar 
to the case of a harmonic spring, although
oscillations in the drop are far from being
linear. Moreover, this finding confirms that
viscosity is not important here.

Figure 2b shows that t is mainly fixed
by the drop radius, because it is well fitted
by R3/2 over a wide range of radii (0.1–4.0
mm). Both this result and the finding
shown in Fig. 2a can be understood 
simply by balancing inertia (of the order
rR/t 2) with capillarity (g/R2), which yields
t<(rR3/g)1/2, of the form already stated
with f(W)~W 1/2. This time is slightly 
different from the Hertz time because the
kinetic energy for a solid is stored during
the impact in a localized region, whereas 
in our case it forces an overall deformation
of the drop (Fig. 1).

The scaling for t is the same as for the
period of vibration of a drop derived by
Rayleigh8, and is consistent with a previous
postulation9, although the motion here is
asymmetric in time, forced against a solid,
and of very large amplitude. Absolute 
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values are indeed found to be different: the
prefactor deduced from Fig. 2b is 2.650.1,
which is significantly greater than
p/£2<2.2 for an oscillating drop8. 
Another difference between the two systems
is the behaviour in the linear regime
(W**1): for speeds less than those shown
in Fig. 2, we found that t depends on V, 
and typically doubles when V is reduced
from 20 to 5 cm s11, which could be due to
the drop’s weight10.

The brevity of the contact means that a
drop that contains surfactants, which will
spread when gently deposited onto the
solid, can bounce when thrown onto it; this
is because the contact time is too short to
allow the adsorption of the surfactants onto
the fresh interface generated by the shock.
Conversely, the contact time should provide
a measurement of the dynamic surface 
tension of the drop.
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Evolutionary biology

Hedgehog crosses the
snail’s midline

A ccording to the dorsoventral axis-
inversion theory1, protostomes (such
as insects, snails and worms) are 

organized upside-down by comparison with
deuterostomes (vertebrates)2–5, in which
case their respective ventrally (belly-side)
and dorsally (back-side) located nervous
systems, as well as their midline regions,
should all be derived from a common
ancestor5. Here we provide experimental
evidence for such homology by showing
that an orthologue of hedgehog, an impor-
tant gene in midline patterning in verte-
brates, is expressed along the belly of the
larva of the limpet Patella vulgata. This

Figure 2 Contact time of a bouncing drop as a function of impact

velocity and drop radius. a, b, In the explored interval (Weber

number, W, between 0.3 and 37), the contact time is a, indepen-

dent of the impact velocity, V, but b, depends on the drop radius,

R. Dotted lines indicate slopes of 0 (a) and 3/2 (b).

Figure 1 Millimetre-sized water drops with different Weber 

numbers (W ) hitting a super-hydrophobic solid. W compares the

kinetic and surface energies of the drop (W4rV 2R/g, where R is

the drop radius, V is the impact velocity, and r and g are the

density and surface tension, respectively, of the liquid). a, When

W is close to unity, the maximum deformation during contact

becomes significant. b, When W<4, waves develop along the

surface and structure the drop. c, When W<18, the drop

becomes highly elongated before detaching and gives rise to

droplets; however, the contact time is independent of the details

of the impact (see Fig. 2a).
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is a constant; this model is appropriate when there is a thin lubricating
film between the block and the plane.

(a) What are the dimensions of ζ?

(b) Use dimensional arguments to determine the horizontal distance `
the block moves before coming to rest.

(c) Consider instead the friction rule Ffriction = −ζv1/2. Again, use
dimensional arguments to determine the horizontal distance ` the
block moves before coming to rest.

30. Consider a mass m attached to a spring (spring constant k). Let the
mass be given an initial velocity v0.

(a) Use dimensional analysis to determine the time τ for the mass to
reach its maximum displacement.

(b) Suppose instead that the spring is nonlinear with a force (F ) versus
displacement (x) relationship F = −k1x

3. Now, use dimensional
analysis to determine the time τ for the mass to reach its maximum
displacement.

(c) Return to the problem statement (a). Suppose that there is damp-
ing as well, such that Fdamping = −ζẋ, where ζ is a constant. Use
dimensional analysis to determine the time τ for the mass to reach
its maximum displacement. Hint: How many dimensionless groups
are there?

31. A linear elastic brittle material is characterized by Young’s modulus E.
The material is used to construct a long narrow rod of length ` that is
connected to a mass m. The rod is then is rotated at angular frequency
ω. Use dimensional analysis to determine an expression for the angular
frequency at which the rod will be observed to fracture. (State physically
why such a response might be expected.)
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ES123: Introduction to Fluid Mechanics and Transport Processes 
Spring 2008 
 
 
This handout includes four articles that focus on the issues of size, scale, and dimensional 
characterization.  The first article uses the classic story Gulliver’s Travel as a way to 
think about the plausibility, in terms of basic physics, of Gulliver and his various 
encounters. Haldane and Gould were two leading biologists who argue in their respective 
articles about the importance of size and shape, and the basic principles of physics, for 
understanding natural biological systems. The final article is by Lord Rayleigh, one of the 
greatest scientists, who provides a terse summary of dimensional reasoning and its use in 
recognizing the quantitative form of an answer. 
 
The articles are 
 

1. “Gulliver was a bad biologist” by F. Moog, Scientific American 1948. 
 
2. “On being the right size” by J.B.S. Haldane  
 
3. “Size and shape: The immutable laws of design set limits on all organisms” by S.J. 

Gould, Natural History 1974.* 
 

a. Note: Steven J. Gould (1941-2002) was one of Harvard’s most 
distinguished and best known professors. He wrote widely about the 
(biological) sciences, both for scientists and non-scientists. For more 
information on Gould, see http://www.stephenjaygould.org/original.html 

 
4. “The principle of similitude” by Lord Rayleigh, Nature 1915. 











On Being the Right Size†

by J. B. S. Haldane

The most obvious differences between different animals are differences of size,
but for some reason the zoologists have paid singularly little attention to them. In
a large textbook of zoology before me I find no indication that the eagle is larger
than the sparrow, or the hippopotamus bigger than the hare, though some grudging
admissions are made in the case of the mouse and the whale. But yet it is easy to
show that a hare could not be as large as a hippopotamus or a whale as small as a
herring. For every type of animal there is a most convenient size, and a large change
in size inevitably carries with it a change of form.

Let us take the most obvious of possible cases, and consider a giant man sixty
feet high - about the height of Giant Pope and Giant Pagan in the illustrated Pil-
grim’s progress of my childhood. These monsters were not only ten times as high as
Christian, but ten times as wide and ten times as thick, so that their total weight
was a thousand times his, or about eighty to ninety tons. Unfortunately the cross
sections of their bones were only a hundred times those of Christian, so that every
square inch of giant bone had to support ten times the weight borne by a square inch
of human bone. As the human thigh-bone breaks under about ten times the human
weight, Pope and Pagan would have broken their thighs every time they took a step.
This was doubtless why they were sitting down in the picture I remember. But it
lessens ones respect for Christian and Jack the Giant Killer.

To turn to zoology, suppose that a gazelle, a graceful little creature with long
thin legs, is to become large, it will break its bones unless it does one of two things. It
may make its legs short and thick, like the rhinoceros, so that every pound of weight
has still about the same area of bone to support it. Or it can compress its body and
stretch out its legs obliquely to gain stability, like the giraffe. I mention these two
beasts because they happen to belong to the same order as the gazelle, and both are
quite successful mechanically, being remarkably fast runners.

Gravity, a mere nuisance to Christian, was a terror to Pope, Pagan, and Despair.
To the mouse and any smaller animal it presents practically no dangers. You can drop
a mouse down a thousand-yard mine shaft; and, on arriving at the bottom it gets a
slight shock and walks away, provided that the ground is fairly soft. A rat is killed, a
man is broken, a horse splashes. For the resistance presented to movement by the air is
proportional to the surface of the moving object. Divide an animal’s length, breadth,
and height each by ten; its weight is reduced to a thousandth, but its surface only a

†Downloaded from http://www.physlink.com/Education/essayhaldane.cfm
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hundredth. So the resistance to falling in the case of the small animal is relatively
ten times greater than the driving force.

An insect, therefore, is not afraid of gravity; it can fall without danger, and
can cling to the ceiling with remarkably little trouble. It can go in for elegant and
fantastic forms of support like that of the daddy-longlegs. But there is a force which
is as formidable to an insect as gravitation to a mammal. This is surface tension. A
man coming out of a bath carries with him a film of water about one-fiftieth of an
inch in thickness. This weighs roughly a pound. A wet mouse has to carry about
its own weight of water. A wet fly has to lift many times its own weight and, as
everyone knows, a fly once wetted by water or any other liquid is in a very serious
position indeed. An insect going for a drink is in a great danger as man leaning out
over a precipice in search of food. If it once falls into the grip of the surface tension
of the water – that is to say, gets wet – it is likely to remain so until it drowns. A
few insects, such as water-beetles, contrive to be unwettable; the majority keep well
away from their drink by means of a long proboscis.

Of course tall land animals have other difficulties. They have to pump their
blood to greater heights than a man, and, therefore, require a larger blood pressure
and tougher blood-vessels. A great many men die from burst arteries, greater for an
elephant or a giraffe. But animals of all kinds find difficulties in size for the following
reason. A typical small animal, say a microscopic worm of rotifer, has a smooth skin
through which all the oxygen it requires can soak in, a straight gut with sufficient
surface to absorb its food, and a single kidney. Increase its dimensions tenfold in
every direction, and its weight is increased a thousand times, so that if it to use its
muscles as efficiently as its miniature counterpart, it will need a thousand times as
much food and oxygen per day and will excrete a thousand times as much of waste
products.

Now if its shape is unaltered its surface will be increased only a hundredfold,
and ten times as much oxygen must enter per minute through each square millimeter
of skin, ten times as much food through each square millimeter of intestine. When
a limit is reached to their absorptive powers their surface has to be increased by
some special device. For example, a part of the skin may be drawn out into tufts to
make gills or pushed in to make lungs, thus increasing the oxygen-absorbing surface
in proportion to the animal’s bulk. A man, for example, has a hundred square yards
of lung. Similarly, the gut, instead of being smooth and straight, becomes coiled and
develops a velvety surface, and other organs increase in complication. The higher
animals are not larger than the lower because they are more complicated. They are
more complicated because they are larger. Just the same is true of plants. The
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simplest plants, such as the green algae growing in stagnant water or on the bark of
trees, are mere round cells. The higher plants increase their surface by putting out
leaves and roots. Comparative anatomy is largely the story of the struggle to increase
surface in proportion to volume.

Some of the methods of increasing the surface are useful up to a point, but not
capable of a very wide adaptation. For example, while vertebrates carry the oxygen
from the gills or lungs all over the body in the blood, insects take air directly to every
part of their body by tiny blind tubes called tracheae which open to the surface at
many different points. Now, although by their breathing movements they can renew
the air in the outer part of the tracheal system, the oxygen has to penetrate the finer
branches by means of diffusion. Gases can diffuse easily through very small distances,
not many times larger than the average length traveled by a gas molecule between
collisions with other molecules. But when such vast journeys – from the point of view
of a molecule – as a quarter of an inch have to be made, the process becomes slow.
So the portions of an insect’s body more than a quarter of an inch from the air would
always be short of oxygen. In consequence hardly any insects are much more than
half an inch thick. Land crabs are built on the same general plan as insects, but are
much clumsier. Yet like ourselves they carry oxygen around in their blood, and are
therefore able to grow far larger than any insects. If the insects had hit on a plan
for driving air through their tissues instead of letting it soak in, they might well have
become as large as lobsters, though other considerations would have prevented them
from becoming as large as man.

Exactly the same difficulties attach to flying. It is an elementary principle of
aeronautics that the minimum speed needed to keep an aeroplane of a given shape in
the air varies as the square root of its length. If its linear dimensions are increased
four times, it must fly twice as fast. Now the power needed for the minimum speed
increases more rapidly than the weight of the machine. So the larger aeroplane, which
weighs sixty-four times as much as the smaller, needs one hundred and twenty-eight
times its horsepower to keep up. Applying the same principle to the birds, we find
that the limit to their size is soon reached. An angel whose muscles developed no
more power weight for weight than those of an eagle or a pigeon would require a
breast projecting for about four feet to house the muscles engaged in working its
wings, while to economize in weight, its legs would have to be reduced to mere stilts.
Actually a large bird such as an eagle or kite does not keep in the air mainly by
moving its wings. It is generally to be seen soaring, that is to say balanced on a rising
column of air. And even soaring becomes more and more difficult with increasing
size. Were this not the case eagles might be as large as tigers and as formidable to
man as hostile aeroplanes.
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But it is time that we pass to some of the advantages of size. One of the
most obvious is that it enables one to keep warm. All warm-blooded animals at rest
lose the same amount of heat from a unit area of skin, for which purpose they need a
food-supply proportional to their surface and not to their weight. Five thousand mice
weigh as much as a man. Their combined surface and food or oxygen consumption
are about seventeen times a man’s. In fact a mouse eats about one quarter its own
weight of food every day, which is mainly used in keeping it warm. For the same
reason small animals cannot live in cold countries. In the arctic regions there are no
reptiles or amphibians, and no small mammals. The smallest mammal in Spitzbergen
is the fox. The small birds fly away in winter, while the insects die, though their eggs
can survive six months or more of frost. The most successful mammals are bears,
seals, and walruses.

Similarly, the eye is a rather inefficient organ until it reaches a large size. The
back of the human eye on which an image of the outside world is thrown, and which
corresponds to the film of a camera, is composed of a mosaic of “rods and cones”
whose diameter is little more than a length of an average light wave. Each eye has
about a half a million, and for two objects to be distinguishable their images must
fall on separate rods or cones. It is obvious that with fewer but larger rods and cones
we should see less distinctly. If they were twice as broad two points would have to
be twice as far apart before we could distinguish them at a given distance. But if
their size were diminished and their number increased we should see no better. For
it is impossible to form a definite image smaller than a wave-length of light. Hence
a mouse’s eye is not a small-scale model of a human eye. Its rods and cones are not
much smaller than ours, and therefore there are far fewer of them. A mouse could
not distinguish one human face from another six feet away. In order that they should
be of any use at all the eyes of small animals have to be much larger in proportion to
their bodies than our own. Large animals on the other hand only require relatively
small eyes, and those of the whale and elephant are little larger than our own. For
rather more recondite reasons the same general principle holds true of the brain. If
we compare the brain-weights of a set of very similar animals such as the cat, cheetah,
leopard, and tiger, we find that as we quadruple the body-weight the brain-weight is
only doubled. The larger animal with proportionately larger bones can economize on
brain, eyes, and certain other organs.

Such are a very few of the considerations which show that for every type of
animal there is an optimum size. Yet although Galileo demonstrated the contrary
more than three hundred years ago, people still believe that if a flea were as large as
a man it could jump a thousand feet into the air. As a matter of fact the height to
which an animal can jump is more nearly independent of its size than proportional
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to it. A flea can jump about two feet, a man about five. To jump a given height, if
we neglect the resistance of air, requires an expenditure of energy proportional to the
jumper’s weight. But if the jumping muscles form a constant fraction of the animal’s
body, the energy developed per ounce of muscle is independent of the size, provided it
can be developed quickly enough in the small animal. As a matter of fact an insect’s
muscles, although they can contract more quickly than our own, appear to be less
efficient; as otherwise a flea or grasshopper could rise six feet into the air.

And just as there is a best size for every animal, so the same is true for every
human institution. In the Greek type of democracy all the citizens could listen to a
series of orators and vote directly on questions of legislation. Hence their philosophers
held that a small city was the largest possible democratic state. The English invention
of representative government made a democratic nation possible, and the possibility
was first realized in the United States, and later elsewhere. With the development
of broadcasting it has once more become possible for every citizen to listen to the
political views of representative orators, and the future may perhaps see the return
of the national state to the Greek form of democracy. Even the referendum has been
made possible only by the institution of daily newspapers.

To the biologist the problem of socialism appears largely as a problem of size.
The extreme socialists desire to run every nation as a single business concern. I
do not suppose that Henry Ford would find much difficulty in running Andorra or
Luxembourg on a socialistic basis. He has already more men on his pay-roll than
their population. It is conceivable that a syndicate of Fords, if we could find them,
would make Belgium Ltd or Denmark Inc. pay their way. But while nationalization
of certain industries is an obvious possibility in the largest of states, I find it no easier
to picture a completely socialized British Empire or United States than an elephant
turning somersaults or a hippopotamus jumping a hedge.

About the Author

John Burdon Sanderson Haldane (November 5, 1892 - December 1, 1964) was a
geneticist born in Scotland and educated at Eton and Oxford University. He was one
of the founders (along with Fisher and Wright) of population genetics. His famous
book, The Causes of Evolution (1932), was the first major work of what came to
be known as the “modern evolutionary synthesis”, reestablishing natural selection as
the premier mechanism of evolution by explaining it in terms of the mathematical
consequences of Mendelian genetics. He was also a great science popularizer, and was
perhaps the Stephen Jay Gould or Richard Dawkins of his day. His essay, Daedalus or
Science and the Future (1923), was remarkable in predicting many scientific advances
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but has been criticized for presenting a too idealistic view of scientific progress.

Haldane was himself a very idealistic man, and in his youth was a devoted
Communist and author of many articles in The Daily Worker. Events in the Soviet
Union, such as the rise of the anti-Mendelian agronomist Trofim Lysenko and the
crimes of Stalin, caused him to break with the Communist Party later in life.

He is also known for an observation from his essay, On Being the Right Size,
which Jane Jacobs and others have since referred to as Haldane’s principle. This
is that sheer size very often defines what bodily equipment an animal must have:
“Insects, being so small, do not have oxygen-carrying bloodstreams. What little
oxygen their cells require can be absorbed by simple diffusion of air through their
bodies. But being larger means an animal must take on complicated oxygen pumping
and distributing systems to reach all the cells.” The conceptual metaphor to animal
body complexity has been of use in energy economics and secession ideas.

Haldane was friends with the author Aldous Huxley, and was the basis for the
biologist Shearwater in Huxley’s novel Antic Hay. Ideas from Haldane’s Daedalus,
such as ectogenesis (the development of fetuses in artificial wombs), also influenced
Huxley’s Brave New World. He had many students, the most famous of whom, John
Maynard Smith, was perhaps also the one most like himself.

In one of the last speeches of his life, Biological Possibilities for the Human
Species of the Next Ten Thousand Years (1963), Haldane coined the word “clone”,
from the Greek word for twig.
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Pick from the Past 
Natural History, January 1974 
 T H I S  V I E W  O F  L I F E  

Size and Shape 
 

The immutable laws of design set limits on all organisms. 

Steven Jay Gould 
Museum of Comparative Zoology, Harvard University  

 
Who could believe an ant in theory? 
A giraffe in blueprint? 
Ten thousand doctors of what’s possible 
Could reason half the jungle out of being.

OET John Ciardi’s lines reflect a belief that the exuberant diversity of life will forever 
frustrate man’s arrogant claims to omniscience. Yet, however much we celebrate 
diversity and revel in the peculiarities of animals, we must also acknowledge a striking 
“lawfulness” in the basic design of organisms. This regularity is most strongly evident in 
the correlation of size and shape. 

Animals are physical objects. They are shaped to their advantage by natural selection. 
Consequently, they must assume forms best adapted to their size. The relative strength of 
such forces as gravity varies with size in a regular way, and animals respond by 
systematically altering their shapes. 

The geometry of space itself is the major reason for correlations between size and shape. 
Simply by growing larger, an object that keeps the same shape will suffer a continual 
decrease in relative surface area. The decrease occurs because volume increases as the 
cube of length (length x length x length), while surface increases only as the square 
(length x length): in other words, volume grows more rapidly than surface. 

Why is this important to animals? Many functions that depend upon surface must serve 
the entire volume of the body. Digested food passes to the body through surfaces; oxygen 
is absorbed through surfaces in respiration; the strength of a leg bone depends upon the 
area of its cross section, but the legs must hold up a body increasing in weight by the 
cube of its length. Galileo first recognized this principle in his “Discorsi” of 1638, the 
masterpiece he wrote while under house arrest by the Inquisition. He argued that the bone 
of a large animal must thicken disproportionately to provide the same relative strength as 
the slender bone of a small creature. 

One solution to decreasing surface has been particularly important in the progressive 
evolution of large and complex organisms: the development of internal organs. The lung 
is, essentially, a richly convoluted bag of surface area for the exchange of gases; the 
circulatory system distributes material to an internal space that cannot be reached by 



direct diffusion from the external surface of large organisms; the villi of our small 
intestine increase the surface area available for absorption of food (small mammals 
neither have nor need them). 

Some simpler animals have never evolved internal organs; if they become large, they 
must alter their entire shape in ways so drastic that plasticity for further evolutionary 
change is sacrificed to extreme specialization. Thus, a tapeworm may be 20 feet long, but 
its thickness cannot exceed a fraction of an inch because food and oxygen must penetrate 
directly from the external surface to all parts 
of the body. 

Other animals are constrained to remain 
small. Insects breathe through invaginations 
of the external surface. Since these 
invaginations must be more numerous and convoluted in larger bodies, they impose a size 
limit upon insect design: at the size of even a small mammal, an insect would be “all 
invagination” and have no room for internal parts. 

We are prisoners of the perceptions of our size, and rarely recognize how different the 
world must appear to small animals. Since our relative surface area is so small at our 
large size, we are ruled by gravitational forces acting upon our weight. But gravity is 
negligible to very small animals with high surface to volume ratios; they live in a world 
dominated by surface forces and judge the pleasures and dangers of their surroundings in 
ways foreign to our experience. 

An insect performs no miracle in walking up a wall or upon the surface of a pond; the 
small gravitational force pulling it down or under is easily counteracted by surface 
adhesion. Throw an insect off the roof and it floats gently down as frictional forces acting 
upon its surface overcome the weak influence of gravity. 

The relative weakness of gravitational forces also permits a mode of growth that large 
animals could not maintain. Insects have an external skeleton and can only grow by 
discarding it and secreting a new one to accommodate the enlarged body. For a period 
between shedding and regrowth, the body must remain soft. A large mammal without any 
supporting structures would collapse to a formless mass under the influence of 
gravitational forces; a small insect can maintain its cohesion (related lobsters and crabs 
can grow much larger because they pass their “soft” stage in the nearly weightless 
buoyancy of water). We have here another reason for the small size of insects. 

The creators of horror and science-fiction 
movies seem to have no inkling of the 
relationship between size and shape. These 
“expanders of the possible” cannot break 

free from the prejudices of their perceptions. The small people of Dr. Cyclops, The Bride 
of Frankenstein, The Incredible Shrinking Man, and Fantastic Voyage behave just like 
their counterparts of normal dimensions. They fall off cliffs or down stairs with 

We are prisoners of the perceptions of our 
size, and rarely recognize how different 
the world must appear to small animals. 

The creators of horror and science-fiction 
movies seem to have no inkling of the

relationship between size and shape.
 



resounding thuds; wield weapons and swim with olympic agility. The large insects of 
films too numerous to name continue to walk up walls or fly even at dinosaurian 
dimensions. 

When the kindly entomologist of Them discovered that the giant queen ants had left for 
their nuptial flight, he quickly calculated this simple ratio: a normal ant is a fraction of an 
inch long and can fly hundreds of feet; these ants are many feet long and must be able to 
fly as much as 1,000 miles. Why, they could be as far away as Los Angeles! (Where, 
indeed, they were, lurking in the sewers.) But the ability to fly depends upon the surface 
area of the wings, while the weight that must be borne aloft increases as the cube of 
length. We may be sure that even if the giant ants had somehow circumvented the 
problems of breathing and growth by molting, their chances of getting off the ground 
would have been far worse than that of the proverbial snowball in hell. 

Other essential features of organisms change even more rapidly with increasing size than 
the ratio of surface to volume. Kinetic energy, for example, increases as length raised to 
the fifth power. If a child half your height falls unsupported to the ground, its head will 
hit with not half, but only 1/32 the energy of yours in a similar fall. A child is protected 
more by its size than by a “soft” head. In return, we are protected from the physical force 
of its tantrums, for the child can strike with, not half, but only 1/32 of the energy we can 
muster. I have long had a special sympathy for the poor dwarfs who suffer under the 
whip of cruel Dr. Alberich in Wagner’s “Das Rheingold.” At their diminutive size, they 
haven’t a chance of extracting, with mining picks, the precious minerals that Alberich 
demands, despite the industrious and incessant leitmotif of their futile attempt. 

This simple principle of differential scaling with increasing size may well be the most 
important determinant of organic shape. J.B.S. Haldane once wrote that “comparative 
anatomy is largely the story of the struggle to increase surface in proportion to volume.” 
Yet its generality extends beyond life, for the geometry of space constrains ships, 
buildings, and machines, as well as animals.  



Medieval churches present 
a good testing ground for 
the effects of size and 
shape, for they were built 
in an enormous range of 
sizes before the invention 
of steel girders, internal 
lighting, and air 
conditioning permitted 
modern architects to 
challenge the laws of size. 
The tiny, twelfth-century 
parish church of Little Tey, 
Essex, England, is a broad, 
simple rectangular 
building with a 
semicircular apse. Light 
reaches the interior 
through windows in the 
outer walls. If we were to 
build a cathedral simply 
by enlarging this design, 
then the periphery of the 

outer walls and windows would increase as length, while the area that light must reach 
would increase as length times length. In other words, the size of the windows would 
increase far more slowly than the area that requires illumination. Candles have 
limitations; the inside of such a cathedral would have been darker than the deed of Judas. 
Medieval churches, like tapeworms, lack internal systems and must alter their shape to 
produce more external surface as they are made larger. 

The large cathedral of Norwich, as it appeared in the twelfth century, had a much 
narrower rectangular nave; chapels have been added to the apse and a transept runs 
perpendicular to the main axis. All these “adaptations” increase the ratio of external wall 
and window to internal area. It is often stated that transepts were added to produce the 
form of a Latin cross. Theological motives may have dictated the position of such 
“outpouchings,” but the laws of size required their presence. Very few small churches 
have transepts. 

I have plotted periphery versus the square root of area for floor plans of all postconquest 
Romanesque churches depicted in Clapham’s monograph of English ecclesiastical 
architecture. As we would predict, periphery increases more rapidly than the square root 
of area. Medieval architects had their rules of thumb, but they had, so far as we know, no 
explicit knowledge of the laws of size. 

Like large churches, large organisms have very few options open to them. Above a 
certain size, large terrestrial organisms look basically alike—they have thick legs and 

 

 

The great range of designs 
among medieval churches can 
be attributed partly to size. 
The twelfth-century parish 
church of Little Tey, Essex, 
England, was only 57 feet 
long and had a simple floor 
plan (lower right corner). The 
floor plan of Norwich 
Cathedral (left), also twelfth 
century, shows adaptations—
transept, chapels—required 
for the 450-foot-long building. 
The need for light and support 
dictated complex cathedral 
layouts.  
 
Click for a larger image. 

 
  



relatively short, stout bodies. Large Romanesque churches are all relatively long and have 
abundant outpouchings. The invention of the flying buttress strengthened later Gothic 
buildings and freed more wall space for windows. Churches could then become relatively 
wider and simpler in outline (as in the Cathedral of Bourges). 

The “invention” of internal organs helped animals retain the highly successful shape of a 
simple exterior enclosing a large internal volume; and the invention of internal lighting 
and structural steel has helped modern architects design large buildings with simple 
exteriors. The limits are expanded, but the laws still operate. No large Gothic church is 
higher than it is long, no large animal has a sagging middle like a dachshund. 

I once overheard a children’s conversation in a New York playground. Two young girls 
were discussing the size of dogs. One asked: “Can a dog be as large as an elephant?” Her 
friend responded: “No, if it were as big as an elephant, it would look like an elephant.” I 
wonder if she realized how truly she spoke.  

http://www.naturalhistorymag.com/master.html?http://www.naturalhistorymag.com/editors_pick/1974_01_
pick.html 










