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Evidence of a magnetic-field-induced isotropic-nematic phase transition is presented for a colloidal
suspension of monodisperse fd virus, a semiflexible particle with a length-to-diameter ratio of ~ 140.
The dynamics of the phase transition are slow enough to study the unstable portion of the phase

diagram and the subsequent phase separation.

PACS numbers: 64.70.Md, 61.25.Hq, 61.30.Gd

We study a magnetic-field-induced isotropic-nematic
phase transition in aqueous colloidal suspensions of the
bacteriophage fd, and its close relative m13, which are
long, semiflexible filamentous viruses [1]. For low con-
centrations of fd the angular distribution function [f(6)],
which characterizes the probability of finding a particle
with its long axis pointing in a particular direction, is
uniform and the phase is optically isotropic. As the con-
centration is increased to a volume fraction of (1-2)% the
sample undergoes a spontaneous first order phase transi-
tion to a chiral nematic phase [2] and the angular distri-
bution becomes anisotropic.

It has long been predicted that an external field, which
orients the particles long axis along the field, will induce
a first order phase transition if the isotropic phase (I)
is thermodynamically near the nematic phase (V) in the
absence of the field [3,4]. Here, we present the first exper-
imental evidence of a magnetic-field-induced I-N phase
transition in any liquid crystal. An unusual feature, par-
ticular to lyotropics, is that the phase transition involves
two order parameters, one characterizing angular order
and the other the particle concentration in the coexisting
phases. We determine the equilibrium concentration—
magnetic-field phase behavior in suspensions of fd and
ml3 by measuring the field-induced birefringence and
through direct observation of the phase separation in a
microscope. We observe that the time constants for the
evolution of the two order parameters are very different.
As a consequence, we are able to follow the dynamics
of phase separation from the unstable portion of phase
diagram through the spinodal decomposition. This is ex-
ceptional because usually a system stays in the unstable
phase for too short a time to observe experimentally.

Previously thermotropic liquid crystals have been used
to study field-induced transitions [5]. Because of the
small size of the molecules, magnetic fields of order 1
MG are needed to observe the critical point [3], which
is well above current obtainable field strengths. Only re-
cently has the phase transition been observed using short
bursts of high voltage ac fields [6].

The viruses fd and m13 are 900 nm in length (L), 6.5
nm in diameter (D) [1], and have a persistence length
(P) of 2200 nm [7]. They are of 1.6 x 10”7 g/mole molec-
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ular weight and at pH 7-8 are negatively charged with
a linear charge density of 10e/nm [8]. In all our studies,
the viruses were suspended in 10mM potassium phos-
phate buffer at pH 7.2, which has an ionic strength of
23mM . The concentrations of the coexisting isotropic ¢;
and chiral nematic ¢, phases of freshly prepared fd were
¢; = 12.6 mg/ml and ¢, = 14.0 mg/ml. We observed a
shift of ¢; and ¢, to higher values with time amounting to
a 2% increase in each after three weeks. The m13 sam-
ple discussed in this paper had ¢; = 15.6 mg/ml. The
physical origin of this time dependence is unknown. Ex-
perimental data are compared only when taken within 24
h of each other. The magnetic birefringence experiments
were performed at the Francis Bitter National Magnet
Laboratory (FBNML) in a 20 T magnet equipped with
a temperature stabilized holder, which was regulated at
22.0°C. Sample cells for all experiments had a 3 mm path
length and were illuminated with a 1 mm diam HeNe
laser (633 nm) for birefringence measurements or white
light for microscopy.

To search for a field-induced transition we built a 100x
polarizing microscope to fit in a 20 T magnet and exam-
ined visually the isotropic samples in coexistence with
the chiral nematic. Initially when the field was swept
from zero to 14 T in 30 sec, the intensity increased from
dark to bright white, then uniform interference colors
swept through the sample. After 1 min small domains
of several microns in size appeared uniformly throughout
the sample forming an amorphous network and, after 30
min, the droplets coarsened to order 20 um. When the
field was rapidly reduced to zero, the field-induced net-
work vanished rapidly. The direct observation of droplet
formation demonstrates that a first order phase transi-
tion has occurred, and the asymmetry in the times for
buildup and decay of the droplets indicate that the dy-
namics of this process are very interesting. We set out
to study the dynamics in detail by measuring the specific
magnetic-field-induced birefringence An/c.

In our experiments An/c was linear in field energy
for small fields and for all concentrations as observed
previously [9]. However, we observed a large nonlin-
ear increase in An/c at high fields for concentrations
in a narrow range of the I-N transition. Deviations
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FIG. 1. The specific magnetic-field-induced birefringence
(An/c) as a function of field squared (H?), for fd concentra-
tions spanning the entire isotropic range at zero field. Data
were taken after the sample was equilibrated in the field, and
the entire set was obtained in a day.

from linear response were not observed previously [9] be-
cause the maximum magnetic field was 1 T, while at the
FBNML we used fields up to 20 T, resulting in field ener-
gies a factor of 400 times greater. The nonlinear increase,
shown in Fig. 1 for freshly prepared fd, is indicative
of field-induced order, as opposed to a linear response
where the birefringence is due to the aligning of the ex-
isting correlation volumes along the field direction. At
the highest fields, and for the highest concentrations one
sees evidence of saturation of the birefringence, indicat-
ing the complete formation of a field-induced nematic
phase. Figure 1 demonstrates that the minimum con-
centration for which a field-induced transition occurs is
within (5-10)% of ¢;.

The dynamics of the induced birefringence is very
rich. Beginning with equilibrated isotropic samples in co-
existence with the chiral nematic at zero field we rapidly
increased the field to a “low” value [10.7 T for fd, Fig.
3(c), 12.4 T for m13, Fig. 2] and observed a monotonic
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FIG. 2. Time dependence (t) of the specific field-induced
birefringence (An/c) following an increase in field from zero
to the field indicated in tesla for a coexisting isotropic sample
of m13, ¢; = 15.6 mg/ml. Only a portion of the curve is
shown and each curve has been offset by an arbitrary amount
for display purposes.
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FIG. 3. Time dependence (t) of the specific field-induced
birefringence (An/c) for fd. (a)—(c) A field jump from zero
and a field quench from 17.7 T to the final values of 10.7,
12.4, and 14.4 T, respectively.

increase in the birefringence whose time response has a
fast and slow component. If instead the field is increased
to “high” field (greater than 16.8 T for m13, Figs. 2 and
4) where the saturation regime begins, the alignment ap-
proaches a steady state monotonically with only the fast
component in the response. In contrast, for intermediate
values of the field, the birefringence increases to a maxi-
mum within a minute after the field is applied and then
slowly decays to a steady-state value. The magnitude of
the overshoot is a function of the field and is illustrated
in Fig. 2 for m13.

We also studied the dynamics of field quenches for the
fd sample of ¢ = 12.6 mg/ml taken 3 weeks after the
data in Fig 1. Because of the upwards shift of the co-
existence concentrations with time, this sample behaves
similarly to the sample of 11.9 mg/ml in Fig. 1. In a
quench we equilibrate the sample at a high field (17.7
T) and then rapidly lower the field. When we quench to
a low field (10.7 T) we observe a rapid decrease of the
birefringence to a minimum, followed by a slow increase
to a steady state value greater than that obtained with
a field jump from 0 to 10.7 T, indicating hysterisis [Fig
3(c)]. After reequilibration at 17.7 T and then quenching
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FIG. 4. The specific magnetic-field-induced birefringence
(An/c) as a function of field squared (H?) for the m13 sample
of Fig. 2. Curve (0): maximum values of An/c if an overshoot
occurs or the value of the birefringence 1 min after the field
achieved its set value. Curve (e): long time values.
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to 14.4 T, we now find that the initial undershoot of the
birefringence no longer occurs. Instead, the birefringence
decreases monotonically to the same value obtained with
a field jump from 0 to 14.4 T [Fig. 3(a)]. Finally, af-
ter a field quench from 17.7 to 12.4 T the birefringence
decreases monotonically and approaches the value equal
to the birefringence resulting from a field jump from 0 to
12.4 T [Fig. 3(b)]. In summary, we find that whenever an
overshoot in birefringence occurs with a field jump from
zero to a certain intermediate field, we never observe an
undershoot with a quench from high field to the same in-
termediate field. Likewise whenever a quench from high
to low field produces an undershoot in the birefringence,
a jump from zero field to the same low field does not
produce an overshoot.

In Fig. 4 we plot the maximum value of the birefrin-
gence for m13 in the case of an overshoot of birefringence
(Fig. 2) or the birefringence 1 min after the field reaches
its new value if no overshoot is observed as a function of
field energy. This time is long enough for the fast com-
ponent to have relaxed, but is too short for the steady
state value to be obtained, as is evidenced in Fig. 2. This
curve has a sigmoidal character. In the same figure we
also plot the long time birefringence as a function of field
energy. This curve increases in an approximately linear
fashion and eventually saturates at high fields. The data
are derived from Fig. 2.

The phase diagram as a function of field has been cal-
culated by Khoklov and Semenov [4] using the Onsager
variational trial function [10] for the two cases of rigid
(P = 00,L>D) and flexible (L>P>>D) neutral parti-
cles. They find the same qualitative phase behavior for
these two cases. The model of charged polymers with
intermediate flexibility is not yet solved. Since we are
seeking a qualitative understanding of the birefringence
data, we compare our results of the field experiments
with the theoretical predictions of the Onsager model for
rigid rods [10], which we solve numerically using an iter-
ative solution of the angular distribution function. This
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FIG. 5. The calculated field-energy—concentration phase
diagram is shown as a function of the dimensionless param-
eters H = AxH?/kT vs ¢ = wDL?n/4. The coexistence
curve separates weakly (o ) from strongly (e ) aligned nematic
phases.

calculation was done previously by Lee [11] for the case
of elongational flow, a potential with the same symmetry
as the magnetic field.

In Fig. 5 the calculated field-concentration phase di-
agram is shown. The critical point occurs at a ratio of
the field energy to thermal energy (H = AxH?/kT) of
H. = 1.02. The concentration is expressed in dimen-
sionless units, ¢ = 7DL?n/4, with n the particle number
density [4,10,11]. At a finite value of the field the two co-
existing phases are a weakly aligned phase with a strongly
aligned phase [3,4]. The strongly aligned phase is a ne-
matic since any chirality is unwound by the large fields.
The lowest concentration for which a field-induced phase
transition will occur is ¢ = 3.12 and the coexisting con-
centrations at zero field are ¢; = 3.29 and ¢, = 4.19. In
Fig. 6 the order parameter S = [ f(0)P2(6)dQ2, with
P,(0) the second Legendre polynomial, is shown as a
function of H for the coexisting phases. S is directly pro-
portional to the experimentally measured specific field-
induced birefringence, An/c. The highest concentration
is g; = 3.29 and two curves are shown for its field-induced
order parameter in the coexisting region of the S-H phase
diagram in Fig. 6. The sigmoidal curve (dashed) is cal-
culated assuming no phase separation occurs, i.e., that
the concentration stays constant at g; = 3.29 as the field
is increased (the vertical line in Fig. 5). In contrast,
the linear curve (solid line) in Fig. 6, assumes complete
phase separation occurs and the relative amount of each
phase is calculated using the lever rule applied along the
q; = 3.29 line in the H-q plane. Then the order param-
eter is calculated as the weighted sum of the coexisting
order parameters shown in Fig. 6. This would be propor-
tional to the observed birefringence if the measurement
averaged over the two phases. The second curve in Figs.
5 and 6 corresponds to a concentration of g. = 3.2, the

FIG. 6. The order parameter (S) and field energy
‘H = AxH?/kT phase diagram. The coexistence curve sep-
arates weakly (o) from strongly (e) aligned nematic phases.
The order parameter for the coexisting and critical concen-
trations, q; and ¢, is indicated. Each concentration has two
curves—the sigmoidal curve (dotted line) assumes no phase
separation occurs along the corresponding constant concen-
tration paths in Fig. 5, while the solid line is the average S
assuming complete phase separation.
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critical concentration.

The behavior of An/c as a function of time, including
the undershoots and overshoots can be understood with
the aid of Figs. 5 and 6. In Fig. 5 four points (a)—(d),
are indicated along the ¢; = 3.29 line and correspond
to the labeled points indicated in Fig. 6. Consider an
isotropic sample in coexistence with the ordered phase
at zero field (H = 0,¢; = 3.29, Fig. 5). Then, sud-
denly increase the field to H = 0.75 to point (a) in Fig.
5. The sample finds itself in the coexistence region of
the phase diagram and decomposes into the weakly and
strongly ordered phases. In the S-H plane of Fig. 6 the
order parameter jumps from zero to 0.47, which is on the
sigmoidal portion of the g; line and is above the equilib-
rium value. Subsequently, S decays to the equilibrium
value, i.e., an overshoot of the order parameter occurs.
Now equilibrate the same sample at a high field, point
(d) in Fig. 5, which is greater than the critical point
and rapidly quench the field to point (a). The sample
again finds itself at point (a) along the sigmoidal portion
of the g; line in Fig. 6, but this time decreases mono-
tonically to the equilibrium value (no undershoot). The
experimental situation is shown in Fig. 3(a). The un-
dershoot case is demonstrated by first equilibrating the
sample at zero field and then rapidly increasing the field
to H = 0.3 [point (c) in Fig. 5]. The sigmoidal portion of
the ¢; line in Fig. 6 at point (¢) has an order parameter
less then the equilibrium value; thus no overshoot occurs.
However, when the sample is equilibrated at point (d) in
Fig. 5 and then quenched to point (¢), an undershoot in
birefringence occurs. This compares well with the data
shown in Fig. 3(c). The observation of hysterisis in Fig.
3(c) indicates it lies below the spinodal line. Since point
(b) in Fig. 5 is near the crossover of the unstable and
equilibrium values of S, no overshoot or undershoot in
S is observed. This is similar to the experimental case
of Fig. 3(b). This model also predicts that there will
be a range of fields for which only overshoot occurs and
a complementary range of fields where only undershoots
are possible. In Fig. 6 the crossover between undershoot
and overshoot behavior occurs at H = 0.5 for g;. The
corresponding experimental data are presented in Figs.
2-4.

Our explanation of the experimental data shown in
Figs. 1-4 relies on two assumptions. First, the time con-
stant for realignment of the particles in response to a field
jump to the unstable portion of the phase diagram oc-
curs much faster than the subsequent phase separation,
and, second, the sample volume from which the birefrin-
gence is measured contains enough two-phase domains
to effectively average the birefringence of the two phases.
While our microscopic observations support the assump-
tion that the droplets are small, we can only speculate
that the droplets that form 1 min after a field jump are
not yet at their final concentration (and order parame-
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ter), which is obtained about 30 min later. The phase
separation process involves mass transport of particles,
which may be much slower than their reorientation from
the isotropic to unstable portion of the phase diagram.
The sudden disappearance of the network after remov-
ing the field from a two-phase sample that has taken a
long time to form in a field is an additional interesting
kinetic feature, and also requires further theoretical and
experimental investigation.

The range of concentrations over which the field in-
duced transition can occur is predicted to be about 5%
of ¢; for both the rigid (Fig. 5) and flexible models
[4], in accordance with our observations (Fig. 1). Fi-
nally, we can estimate the critical field, which as seen
in Fig. 6 is expected to be near the field for which
saturation in the birefringence occurs. We observe this
field to be 17 T (Fig. 1). Using the literature value of
Ax = 7 x 10724J/T? [12] we find H = 0.5. This is less
than predicted for rigid rods but close to the critical field
predicted for persistent polymers [4].

We thank E. Bullet, L. Makowski, M. Cahoon, and
Z. Dogic for assistance in the preparation of virus. We
thank G. Maret and S. F. Schulz for conveying their un-
published magnetic birefringence data on fd to us, and
T. J. Sluckin, G. J. Vroege, H. N. W. Lekkerkerker, and
R. B. Meyer for many stimulating discussions. We ac-
knowledge support from NSF DMR 4-59850.

[1] S. Bhattacharjee, M.J. Glucksman, and L. Makowski,
Biophys. J. 61, 725 (1992).

[2] J. Lapointe and D.A. Marvin, Mol. Cryst. Liq. Cryst. 19,
269 (1973).

(3] J. Hanus, Phys. Rev. 178, 420 (1969); C. Fan and M.
Stephen, Phys. Rev. Lett. 25, 500 (1970); P.J. Wojtow-
icz and P. Sheng, Phys. Lett. 48A, 235 (1974); R.M.
Hornreich, Phys. Lett. 109A, 232 (1985).

[4] A.R. Khokhlov and A.N. Semenov, Macromolecules 15,
1272 (1982).

[5] A.J. Nicastro and P.H. Keyes, Phys. Rev. A 30, 3156
(1984).

(6] L. Lelidis and G. Durand, Phys. Rev. E (to be published).

[7] T. Maeda and S. Fujime, Macromolecules 18, 2430
(1985); E. Loh, E. Ralston, and V.N. Schumaker,
Biopolymers 18, 2549 (1979); E. Loh, ibid. 18, 2569
(1979); K. Beck and R.M. Duenki, J. Struct. Biol. 105,
22 (1990); L. Song, U-S. Kim, J. Wilcoxon, and J.M.
Schurr, Biopolymers 31, 547 (1991).

[8] K. Zimmermann, J. Hagedorn, C.C. Heuck, M. Hinrich-
sen and J. Ludwig, J. Biol. Chem. 261, 1653 (1986).

[9] H. Nakamura and K. Okano, Phys. Rev. Lett. 50, 186
(1983).

[10] L. Onsager, Ann. N.Y. Acad. Sci. 51, 627 (1949).

[11] S-D. Lee, J. Chem. Phys. 86, 6567 (1987).

[12] J. Torbet and G. Maret, Biopolymers 20, 2657 (1981).



