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Using video microscopy techniques, we have measured the position distribution of polystyrene spheres 
[&)I suspended in deionized water and confined between two glass plates. The sphere-plate interaction 
potential [U(z)l was deduced using equilibrium statistical mechanics: P(z) = C exp[-U(z)/kBTl. 
Measurements are presented for five different values of the plate spacing, and the results show that the 
rms displacement of the spheres, perpendicular to the plates, increases exponentially as the gap increases. 
The average position of the spheres is not always located at the midplane of the gap, indicating that there 
may be variations in the surface charge of the two glass plates. A comparison is made with the theory 
of Derjaguin, Landau, Venvey, and Overbeek (DLVO) for the interaction of colloidal particles with plane 
surfaces, and the experimental results are shown to be consistent with a harmonic approximation to the 
theory. 

Introduction 
The measurement of statistical distribution functions 

in colloidal suspensions using direct microscopic observa- 
tion has a long history, and the first quantitative 
investigations of Brownian motion were performed this 
way.' Here we study the motion of a single charged sphere 
confined between two glass plates using digital video light 
microscopy and measure the distribution of the positions 
in the direction perpendicular ( z )  to the plates. The aim 
of the measurement is to determine the interaction 
potential U(z),  which is related to the equilibrium dis- 
tribution function by 

with C a normalization constant. The interaction potential 
of a single sphere with a single plate has been determined 
through the measurement of the displacement distribution 
function using a technique based on the frustrated total 
internal reflection of light.2 However, the great sensitivity 
of this technique, which arises from the exponential 
dependence of transmitted light as a function of sphere- 
plate separation, also limits its range to the order of a 
skin depth of light. A second method, utilizing a colloidal 
particle attached to an atomic force microscope, also 
provides high-resolution data for the interaction forces 
between a spherical particle and a glass plate.3 In 
contrast, direct microscopic observation works best for 
particles with separations of a t  least the wavelength of 
light, and thus can be used to study spheres with a large 
sphere-plate separation. In addition, this technique is 
not restricted to the sphere-plate geometry, but can be 
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used to study the interparticle potential between colloidal 
particles in a colloidal suspensions. This latter case will 
be the subject of a different paper.4 

This paper has two goals. The first is to test the 
feasibility of the method of measuring distribution func- 
tions using direct microscopic observation to obtain the 
interaction potential. The second goal is to study the 
magnitude ofthe fluctuations of colloidal particles confined 
between two glass plates. This geometry has been used 
in studies of two-dimensional melting of colloidal crystals, 
where the colloid is confined to a single thin layer by the 
two  plate^.^ By increasing the spacing of the plates, a low 
ionic strength dispersion can change from a 2D dilute gas 
to a highly-ordered single-layer crystal. Although the 
motion of the spheres is mostly in a plane parallel to the 
plates, there is some motion in the direction perpendicular 
to the plates and, as the gap is increased, the motion of 
the spheres out ofthe plane becomes larger until two layers 
of spheres can be accommodated. The interaction of 
individual spheres with the confirming surfaces has not, 
to our knowledge, been studied. 

In this paper, we present experimental measurements, 
using video microscopy, of the movement of the spheres 
in the direction perpendicular to the confining plates for 
five different plate spacings. It is found that the sphere 
distributions obtained from the data are well described 
by Gaussian distributions, which broaden as the gap is 
widened. The Gaussian shape of the distributions and 
the functional form of the broadening, as the gap is 
increased, is consistent with a harmonic approximation 
to the DLVO theory of sphere-surface interactions, using 
only screened electrostatic interactions. 

Experimental Procedure 
The 2D cell consists of a silicone O-ring sandwiched 

between two pieces of 1-in. x 1-in. microscope slide glass. 
A small glass post ('la in. x '/s in. x '/16 in.) is glued to one 
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of the glass windows with transparent Norland optical 
adhesive, and the O-ring is compressed to  produce a small 
gap between the post and the glass window. Data was 
taken for five different gaps: 4.0,5.0,6.2,7.2, and 8.4 pm, 
in that order. 

The thicknesses of the gaps were measured using a laser 
interference method described by Hurd.6 The accuracy of 
the measurements is limited by the fact that the beam 
samples different parts of the gap as the cell is rotated for 
the measurements, and any nonparallelism will result in 
a measurement which is an average of the sampled area. 
During assembly the plates were adjusted for parallelism 
with a monochromatic light source, and for these experi- 
ments the thickness measurements are expected to be 
accurate to within 0.14pm, the maximum variation ofthe 
thickness from the center to the outside edge of the post. 

The cell is filled with a dilute colloidal dispersion of 
1.27-pm polystyrene spheres in a density matching 5050 
mixture of DzO and H20. Deionizing resin is present in 
the cell, but outside the gap, to maintain the low ionic 
concentration of the dispersion. 

The spheres are viewed with an Olympus microscope, 
with a 40x objective and long working length condenser, 
operated in transmission mode. A CCD camera mounted 
on the microscope records images that are digitized and 
analyzed on a mainframe computer. 

When properly focused the spheres appear as dark 
objects on a brighter background. However, a polystyrene 
sphere acts as a lens and by slightly defocusing can be 
made to appear as a bright disk surrounded by a dark 
annulus and background. This optical property is ex- 
ploited in the particle detection algorithm, where an 
intensity threshold is used. The threshold value is chosen 
to be greater than the intensity of the dark annulus and 
background, but less than the intensity of the bright disk. 
Each line of the digitized image is then scanned for pixels 
that are above the threshold value. When such a pixel is 
encountered, the neighboring pixels are checked. If any 
are above threshold, the process is repeated. With 
reasonable adjustment of the threshold, “clusters” of 
contiguous bright pixels are found, which identify sphere 
centers. Once the clusters are located, the particle position 
is determined from the center-of-intensity of the cluster. 

By using the sphere position obtained in this way, a 
total intensity (I) is calculated by summing the intensities 
of pixels in an array centered on the sphere. The size of 
the array is chosen so that, a t  its maximum, the entire 
bright disk is contained within the array. In this way the 
pixels a t  the edge ofthe cluster, which may fluctuate about 
the threshold intensity, do not cause large fluctuations in 
the overall particle intensity. 

The size and intensity of the bright disk is a function 
ofthe displacement of the sphere relative to the focal plane 
of the objective. The intensity of the disk is a maximum 
when the refracted light from the sphere is focused in the 
focal plane ofthe objective. As the sphere moves in either 
direction away from this position the intensity of the disk 
decreases. 

Using a reference sphere stuck to one of the glass 
surfaces and changing the position ofthe focal plane (stage 
height), we can determine the disk intensity as a function 
of the displacement from the position of maximum 
intensity. These displacements are in a direction per- 
pendicular to the confining plates. 

When a moving sphere is tracked the focal plane is held 
constant; but the sphere position relative to the focal plane 
is changing. By measuring the intensity of the moving 
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Figure 1. Schematic diagram of the experimental situation. 
Incident light is focused by the spheres. The focal plane of the 
objective lies between the focal points of the reference and 
moving spheres so that both can be located by the particle 
detection algorithm. The intensity of the spheres is a function 
of the displacement from the focal plane of the objective. The 
relative displacement of the reference and moving sphere can 
be determined using their intensities and the calibration curve 
of Figure 2. The displacement of the moving sphere from the 
midplane of the gap is then calculated using eq 2. 

sphere and using the calibration results from the reference 
sphere we can determine the displacement of the moving 
sphere from the position of maximum intensity, as shown 
Figure 1. 

In the experiment, we first use the reference particle 
to obtain a calibration curve of intensity as a function of 
displacement from the position of maximum intensity. 
The focal plane of the objective is then adjusted to lie 
between the maximum intensity positions for the reference 
sphere and moving spheres. 

By measuring the intensities associated with the 
reference sphere and the moving spheres the displacement 
from the midplane of the gap, z ,  can be obtained from the 
calibration curves according to the formula 

(2) z = L/2 - AS, - AS,,, - 012 

where a is the particle diameter, As, and Asm are the 
displacements from the position of maximum intensity of 
the reference and moving spheres, respectively, and L is 
the gap thickness. Again, the situation is illustrated in 
Figure 1. 

Typically, 1-6 particles are tracked together, including 
the reference particle, with a total of about 7-12 particles 
tracked for each gap. Each tracking run consists of 100 
data points per particle and lasts approximately 10 s. At 
each time the x and y coordinates (dimensions parallel to 
the plates) and intensity are stored for each particle. 

For each gap thickness, an intensity-displacement 
calibration curve is generated for the reference sphere, 
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adjustments of the light source intensity between data 
sets, but the normalized curves (M,) are very similar. In 
fact, the calibration procedure should be independent of 
the size ofthe gap, and the variation among the calibration 
curves gives an estimate of the error associated with using 
them for measuring the sphere displacements. For the 
typical range of displacements (shown in Figure 2) the 
measurements of As = Asr + Asm (used in eq 2) are expected 
to be accurate to within 0.07 pm. 

Results 
Once the intensity-displacement calibration curve is 

obtained, moving spheres are tracked along with the 
reference sphere, as described above. By using the 
intensity values recorded for the moving and reference 
spheres, along with the calibration curves of Figure 2, the 
sphere displacement from the midplane can be obtained 
according to eq 2. 

Before these calculations are made however, it is 
necessary to make some modifications to the data. 
Because of fluctuations of the light source, the reference 
particle intensity distributions are not 6 functions. 
These fluctuations will also affect the intensity of the 
moving spheres. Therefore, a t  each time step, t, the 
fluctuations are corrected according to the formula, 
Inedt) = Iold(t)(Iref)Iredt), where Inedt) and Iodt )  are, 
respectively, the corrected and measured values of the 
intensity of the moving sphere, IreXt) is the measured value 
of the reference sphere intensity, and (Iref) is the intensity 
of the reference particle averaged over the time of the 
tracking run. 

In addition, there are also inhomogeneities in the 
background illumination of the field of view, with the 
center being the brightest and most uniform region. To 
avoid spurious results from inhomogeneities in the field 
of view, the reference spheres are located in the middle 
region, and a cutoff radius around the reference sphere 
is used to reject the data points of any moving sphere that 
goes beyond this radius. In order to insure that the spheres 
are isolated from each other, data points are also rejected 
if any pair of spheres is separated by less than four sphere 
diameters. 

The resulting distributions, using the screening criteria, 
the intensity correction, and eq 2, are shown in Figure 3, 
where the probability distribution for displacement from 
the midplane is plotted for each gap thickness. It can be 
seen that the distributions broaden as the gap is increased, 
as one would expect, but that the positions of the peaks 
vary about the midplane, and that this variation does not 
change consistently as the gap is changed. 

The histograms in Figure 3 are expected to be a good 
approximation of the equilibrium distribution a t  each 
value of the gap thickness. As described previously, the 
data in the figure comes from tracking many independent 
spheres (approximately 10 s each), and each sphere will 
independently be sampling the equilibrium distribution. 
In all cases, except for the largest gap, the time for a sphere 
to diffuse the width of the distribution is smaller than the 
time over which a single sphere is tracked. 

The accuracy ofthe measurements ofz can be estimated 
from the error in the terms used to calculate it (eq 2). As 
discussed earlier, the measurements of L are expected to  
be accurate to within 0.14 pm, and the accuracy in As = 
Asr + As,,, is approximately 0.07 pm. The variance of the 
diameter of the spheres is typically less than 2%, and not 
large enough to add any significant error. Of all the 
sources of error, inaccuracies in the measurement of the 
gap thickness would most directly contribute to errors in 
the location of the spheres relative to the midplane of the 
gap. From eq 2 it can be seen that errors in the 
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Figure 2. Calibration curves of the normalized intensity (Z/Z,) 
vs displacement from the position of maximum intensity for 
five different gaps between glass plates: 4.Opm (hollow circles), 
5.0pm (hollow triangles), 6.2pm (hollow squares), 7.2pm (solid 
triangles), and 8.4 pm (solid circles). Z, values are obtained 
from parabolic fits to the data, Z = Z, - AAs? (solid lines). Also 
shown are the typical ranges of displacement values for the 
reference and moving particles. 

followed by tracking of the intensities of the moving and 
reference spheres, and finally a thickness measurement 
of the gap. 

Calibration Procedure 
Because the stage micrometer of the microscope provides 

only a coarse measure of the stage displacements, a linear 
variable differential transformer (LVDT) is used to 
measure the stage-height motion for small displacements. 
The coils of the transformer are mounted on the body of 
the microscope, while the core piece is attached to the 
stage. A PAR-122 lock-in amplifier drives the primary 
coil of the LVDT and analyzes the output from the 
secondary coils. Voltage readings are taken from a digital 
voltmeter attached to the output of the lock-in amplifier. 
A calibration of the LVDT voltage readings with the stage 
height motion gave a linear curve, with a slope of 14.9 

To calibrate the intensity of the reference particle to  
the LVDT voltage readings, the focus of the microscope 
was adjusted so that at least one pixel of the reference 
sphere appears above the threshold value and the average 
intensity and LVDTvoltage are recorded. This is repeated 
as the focus is adjusted through the position of maximum 
particle intensity and on until there are no more pixels 
above the threshold value. During calibration the stage 
micrometer is only advanced in one direction thus avoiding 
any backlash in the gears. 

The resulting intensity-voltage curves can be converted 
to intensity-displacement curves by using the results of 
the calibration of the stage height to the LVDT voltage 
readings. Besides the 14.9 p u "  conversion factor, an 
additional factor of 1.33 is needed to correct for the 
difference between the index of refraction in the cell (water) 
and the index of refraction outside the cell (air). 

The results are shown in Figure 2, where the intensity 
is plotted as a function of the displacement from the 
position ofmaximum intensity. Also plotted are parabolic 
fits to the data of the form I = I ,  - AAsr2. The value of 
I ,  is not the same for all calibration curves due to 

P u " .  
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the distance of closest approach the attractive potential 
between sphere and plate is estimated to be less than 0.1 
kBT(1ess than 0.1% of the estimated repulsive force at  the 
same separation). 

The repulsive Coulomb potential between a sphere and 
a plate can be written as7 

(3) 

where B = 32nccouy,y,(k~T/e)2, the subscripts s and p refer 
to the sphere and plate respectively, y = tanh(elyd4k~T), 
I#, is the appropriate surface potential for the sphere or 
plate, u the particle diameter, K is the inverse Debye 
screening length, e is the electron charge, and x = rlu, 
where r is the distance from the sphere center to the plate. 
Equation 4 applies for the case of monovalent counterions 
and large KU. There are separate equations for the case 
of small KU, and this experiment, with KU approximately 
three, lies somewhere between the two extremes. The 
expression for the small KU case is quite complicated, 
however, and will not be considered here. 

v - B ln(l + e - ~ d ~ - 0 . 5 )  
R- 

For a sphere confined between two plates, 
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Figure 3. Normalized probability distributions [P(z)] of 
displacement ( z )  from the midplane for five different gaps 
obtained from experimental data (circles). Also shown (solid 
lines) are curves obtained by fitting the experimental data to 
Gaussian probability distributions. Fitted parameters are 
shown in Table 1. 

measurement of the gap would systematically shift the 
distribution of sphere positions relative to the midplane 
of the gap. However, the size of the gap measurement 
errors is not large enough to entirely account for the those 
distributions that are centered well off the midplane of 
the gap. The other sources of error are not correlated and 
are also not large enough to account for the shifted 
distributions. 

The variation in the positions of the distributions 
relative to  the midplane of the gap could be due to  
variations in the surface charge of the plates. Because it 
is necessary to move the cell in order to change the gap 
and make a thickness measurement, each data set is taken 
at  a different place on the post. If there are variations in 
the surface charge of the plates, the charge of the top and 
bottom plates may not be equal, and there will be 
variations in the position of the spheres relative to the 
midplane of the gap. Another observation that supports 
the hypothesis that the charge is asymmetric is that all 
the stuck spheres used to obtain the reference intensity 
discussed in the Calibration Procedure section adhered 
to the small glass post and not the larger microscope slide. 

DLVO Analysis 
The theory of double-layer repulsion and van der Waals 

attraction formulated by Derjaguin, Landau, Venvey, and 
Overbeek (DLVO) can be used to describe the interaction 
between the plates and a sphere. In this case, the van der 
Waals attraction will be ignored, since the spheres and 
plates are dissimilar materials, and with the low ion 
concentration of the dispersion the contribution of any 
attractive van der Waals force would be negligible. At 

where the subscripts 1 and 2 refer to the top and bottom 
plates respectively, which in general can have different 
surface potentials. Making the change of coordinates x1 
= (L12 - (z - z,) - z0Yu and x2 = (L/2 + (z - z,) + z,)/u 

V, = B ,  In(1 + ueKzoeK(z-zJ > +  
B, ln(l + u e - ~ ~ o e - ~ ( ~ - z o )  ( 5 )  

where a = exp(-K(L - a)/2), and zo is the position of the 
potential minimum. 

For the conditions of this experiment, the exponential 
terms within the logarithms are small enough that the 
approximation ln(1 + u) = u can be used and 

Expanding the exponentials and keeping terms up to 
second order gives 

where Be, = B1 exp(Kzo), and we have made use of the fact 
that the minimum of the potential occurs a t  zo and B1 

To second order then, the repulsive potential felt by the 
spheres can be approximated as a harmonic potential, 
and the resulting distribution curve will be a Gaussian. 
Figure 3 shows the results of fitting the data to a Gaussian 
distribution1 

exp(K2.J = B2 exp(-Kzo). 

where P(z) is the probability of finding the particle a t  a 
distance z from the midplane, and the fitted Gaussian 
parameters are summarized in Table 1. The Gaussian 
distributions seem to fit the data well except for the 8.4- 
pm data, where the experimental distribution drops off 
prematurely as the particle moves below the midplane. 

(7) Verwey, E. J.; Overbeek, J. Th. G. Theory of the Stability of 
Lyophobic Colloids; Elsevier: New York, 1948. 
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Table 1. Gaussian Parameters for Particle 
Displacement Distributions 

dataset gapkm) Po u,@m) z,@m) BdB2 ~ ( m s - ~ )  

1 
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a 4.0 6.7 0.060 -0.49 6.5 32 
b 5.0 4.2 0.099 -1.02 51 19 
C 6.2 2.5 0.16 0.07 0.76 12 
d 7.2 1.5 0.27 -0.31 3.3 7.7 
e 8.4 0.54 0.92 -0.10 1.5 2.1 
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Figure 4. The dimensionless interaction potential relative to 
the minimum potential energy [ U(z) - U(z,)/kT, between a single 
colloidal sphere and two glass plates is shown as a function of 
displacement from the equilibrium position (z,), for several 
spacings between the plates. The potentials were obtained from 
the distributions of Figure 3 using ln[P(z)l= In(C) - U(z)/kBT 
(eq 9). The constant C was chosen such that h(C) = U(zo)/kBT, 
with zo the particle's equilibrium position. Experimental data 
(symbols) is shown: 4.0 pm (circles), 5.0 pm (downward 
triangles), 6.2pm (squares), 7.2pm (upward triangles), and 8.4 
pm (diamonds), along with fits to  a harmonic potential (solid 
lines). 

As the gap increases the harmonic approximation will 
eventually become inadequate. In the limit of large gap, 
the particle diffuses essentially as a free particle in the 
central region of the gap, and only feels the repulsive 
potential close to the glass surface. The data set for the 
8.4-pm gap approaches such a case. 

From eq 1 

Thus the measurement ofP(z) yields the potential energy 
to within a constant. Since the potential energy itself is 
only defined to within a constant, we define the minimum 
value of the potential to be zero, which occurs at z = zo. 
In Figure 4 the dimensionless potential energies, [ U(z)  - 
U(z,)ykT, are plotted for each of the different gaps. The 
potentials are well fit by a quadratic function, indicating 
the harmonic approximation to the potential is accurate. 

The equipartition theorem applied to a harmonic 
oscillator with spring constant k, predicts that k((z-z,)2) 
= kBT, and for the Gaussian distribution of eq 9, we have 
((~-2,)~) = uz2. Using the results of the Gaussian fits we 
can test how well the data fits the DLVO theory by 
comparison with eq 8. From this comparison, we would 
expect 2aBeq~' = kBT/uz2. Figure 5 shows the result of 
fitting ~ ~ B , , K ~ / ~ B T  to the a, data obtained from the 
Gaussian fits, as a function of the gap thickness L. The 
theory predicts that uZ2 varies exponentially with the plate 
spacing, L.  Except for the largest gap, the results are fit 
well by a single value of the screening length, K - ~  = 0.52 
pm, a value consistent with the presence of ion exchange 
resin in the sample. The fit also yields Ueq/kBT = 1.0 x 
lo3.  If the surface potentials of the sphere and plates are 
the same, this would imply a value of 20 mV for the surface 
potential. 

It has been noted that the sphere distributions are not 
centered at  the midplane of the gap, indicating an 
anisotropy in the charge of the plates. Although the pre- 

experimental cleaning of the cover glass and post are the 
same, the manufacture of the two is different. The cover 
glass is cut from standard microscope slide glass (boro- 
silicate), while the small post is cut to order from plates 
of BK-7 glass. It is also possible that residual films on the 
glass might locally reduce the surface charge of either of 
the glass surfaces. The anisotropy in the strength of the 
two surfaces is given by B1/B2 = exp(-2~z,). These values 
are also shown in Table 1. 

Langevin Oscillator 
The motion of a sphere perpendicular to the plates can 

be approximated as that of a one-dimensional harmonic 
oscillator undergoing Brownian motion. The motion is 
described by the Langevin equation 

d2zldt2 = -p dzldt + A(t) - OJ'Z (10) 

where m is the mass of a sphere, p = flm = 3 ~ 7 0 C / m  is 
the viscous relaxation rate, f is the friction coefficient, 
A ( t )  is the stochastic acceleration, 7 is the viscosity, u is 
the sphere diameter, Cis a correction factor that accounts 
for the reduced diffusion coefficient of the spheres in the 
narrow gaps, and w is the natural frequency of the 
oscillator, related to the spring constant by k = mu2. The 
correction factor is the ratio ofthe free diffusion coefficient 
to the reduced diffusivity caused by wall effects and is a 
function of the sphere radius and gap th i~kness ,~  ranging 
from 1.2 to 1.7 for this experiment. The friction does not 
affect the equilibrium distribution function of sphere 
positions, which is independent of dissipative processes, 
but does affect the time, t, necessary for the equilibrium 
distribution to be obtained. 

The solutions to this problem have been worked out by 
Chandrasekhar,' Uhlenbeck and Omstein,* and Wang 
and Uhlenbe~k,~  and depend upon the quantity Pl2 = p2 
- 4w2, with real corresponding to overdamped motion, 
p1 imaginary for periodic motion, andB1 zero corresponding 
to aperiodic motion. However, in the limit of large Pt for 
the periodic and aperiodic cases, or large (p - p1)t for the 
overdamped case, all the solutions have the same form, 
and the second moment is ( ( Z - Z , ) ~ )  = kBT/mw2. The 
equipartition result is approached exponentially with a 

~ 

(8) Uhlenbeck, G. E.; Omstein, L. S. Phys. Rev. 1930, 36, 823. 
(9) Wang, M. C.; Uhlenbeck, G. E. Reu. Mod. Phys. 1945, 17, 323. 
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time constant o f t  = f l k ,  which is the ratio of the friction 
coefficient to the spring constant. For our case p = (1.3- 
1.6) x lo7 s-l, and we can assume the limiting case of 
large pt applies, calculate w ,  and then calculate to verify 
if the assumption is correct. 

The w values derived from the experimental data are 
shown in Table 1. Since the w values are small compared 
to /3, the equation for p1 can be rewritten as PI = pCl - 
2w2Ip2). ' From this expression it can be seen that Pl is real 
and we are dealing with the overdamped case. In addition, 
1.6 x s < z < 3 s. The appropriate time constant for 
the approach to  equilibrium is given by z. Since tracking 
of a single particle takes approximately 10 s, the as- 
sumption of t lz  large is valid and a proper ensemble 
average of the displacement distribution is obtained. 

Conclusion 
Video microscopy techniques have been used to track 

the movement of polystyrene spheres perpendicular to 
the confining glass plates in a 2D geometry. From these 
measurements we have obtained probability distributions 
for the position of the spheres, relative to the midplane 
of the gap, for five different plate spacings and have 
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determined the sphere-plate potential energy. The rms 
displacement of the spheres increases exponentially as 
the gap between the plates is increased. The most probable 
position for the spheres varies and is not always located 
at  the midplane, possibly indicating spatial charge varia- 
tion on the glass surfaces. The broadening of the sphere 
distributions as the gap is increased is consistent with a 
harmonic approximation to the DLVO theory using only 
screened electrostatic forces and ignoring attractive Van 
der Waals forces. It is shown that the experimental 
situation can be described in terms of an overdamped 
Langevin oscillator and that our measurements are long 
enough to ensure that a proper statistical ensemble is 
obtained. Our model produces reasonable values for the 
Debye screening length and surface potentials of the 
sphere and glass plate. 
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