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The phase behavior of the system of parallel rigid triblock copolymers is examined using the second
virial density functional theory. The triblock particle consists of two identical infinitely thin hard
rods of finite lengths on the opposite ends of one central hard cylinder with nonzero length and
diameter. Stability analyses and free energy calculations show that the system of parallel particles
can form not only uniform nematic and smectic A phases but also a smectic C phase. The stability
and structure of the tilted structure are controlled by only the diameter and the length of the central
cylinder segment. Interestingly, the diameter affects only the layer tilting and the periodicity, but not
the packing fraction of the nematic to smectic—C transition. For all values of cylinder length the
usual smectic A and smectic C transitions compete with each other and no nematic-columnar
transition is observed. At low and high cylinder lengths the smectic A phase is stabilized first, while
the smectic C is the most stable for intermediate length values. © 2007 American Institute of
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I. INTRODUCTION

The theory of liquid crystalline order based on hard core
repulsion of anisotropic shaped molecules begins with
Onsagerl who explained the isotropic-nematic phase transi-
tion for colloidal suspensions of rods and plates. Because the
interparticle interaction is purely steric, only entropy enters
the free energy of a fluid of hard particles. Interparticle po-
tentials are composed of repulsive and attractive components
and in the molecular theory of liquids, the free energy can be
treated as primarily arising from the repulsive component
with attractions added as a perturbation.2 For this reason a
line of inquiry that has occupied many after Onsager has
been to explore what other liquid crystalline phase transi-
tions could be understood as arising for purely entropic rea-
sons and what phase transitions required attractions.”

Entropic theories of the nematic to smectic-A transition
of hard core rodlike particles were first treated by Hosino et
al.* and verified in simulations by Stroobants et al.’ This
latter work stimulated a large number of papers on the
theory, simulation, and experiment of hard core liquid
crystals.6

In this paper, we are concerned with three phase transi-
tions, the nematic to smectic-A, nematic to smectic-C, and
smectic A to smectic C transition in hard core systems. The
latter is a phase transition between a layered phase (smectic
A) in which the long axes of the anisotropic molecules are
parallel to the layer normal and a layered phase, where the
axes of the particles are tilted with respect to the layer (smec-
tic C), as illustrated in Fig. 1. This transition was first theo-
retically studied by Wulf” who considered the tilting to arise
from the zigzag shape of the mesogens, a viewpoint that was

YE]ectronic mail: vargasz@almos.vein.hu
Y Electronic mail: fraden@brandeis.edu

0021-9606/2007/127(15)/154902/7/$23.00

127, 154902-1

recently investigated using simulations.® Obliquely shaped
molecules have also been treated.*’ Another class of mol-
ecules exhibiting the entropically driven smectic A to smec-
tic C transition are rod-coil molecules, which consist of at
least two blocks, one of a polymeric and one of a rigid
nature.'®"" A related molecular class consists of molecules
composed of a rod grafted to a sphere, or another wider
particle.lz’13 In both classes, the rodlike part drives the iso-
tropic to nematic transition, while the polymeric (spherical)
part drives the smectic ordering. If the diameter of the
spherical part is somewhat larger than the rod diameter, then
a smectic A to smectic C transition ensues. This class of
liquid crystalline molecules is similar to block copolymers in
that the layered smectic phases can be viewed as a mi-
crophase separation arising from the frustrated macrophase
separation that would occur but is prevented from doing so
by the bond between the two blocks.

Our model consisting of a cylindrical core with two thin

(b) ©

FIG. 1. (a) Hard body representation of a linear rigid triblock particle. Top
and bottom segments are rods of zero length, while the central segment is
hard cylinder with finite diameter (D) and length (A). The overall length of
the particle is denoted by L. (b) Schematic of the smectic A phase. (c)
Schematic of the smectic C phase with a.
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rods extruding from the centers of the end faces (Fig. 1) is a
hybrid between the hard core uniform cylinders that form
smectic A and not smectic C phases and the rod-coil mol-
ecules, which lack inversion symmetry and exhibit bilayer
phases such as the smectic A; and Cd.”’12 Because of the
higher symmetry of the triblock cylinders our system allows
the study of the smectic A to smectic C transition without
intervening phases.

Il. THEORY

According to the second virial theory the free energy of
an inhomogeneous system can be written as a sum of ideal
and excess contributions SF=BF;+ ,BFC,(,14 where

BFid=deP(f)[ln p(r)—1], (1)

1
,BFex=—5fdl‘lp(fl)fdlzp(fz)fM(Zu)- (2)

In these equations, B8=1/kgT (kg being the Boltzmann con-
stant and T the temperature), p(r) is the local number density,
and f,,(r;») (Mayer function) is directly connected to the pair
potential («) through the relation of f),(r;,) =exp(—Bu(r;,))
—1. Note that Egs. (1) and (2) are only valid for systems
without orientational freedom. In our case, the pair potential
is hard, so the Mayer function takes the following simple
form:

1 ifr=so

fulD) = {; (3)

otherwise,

where o is the distance of closest approach between two
particles. Since the particles are parallel and rodlike, it is
reasonable to consider the stability of uniform phase (nem-
atic) with respect to smectic-type density modulations. To do
this we assume that a density modulation with a period of g
takes place along the z axis and that the local density is
uniform in a plane perpendicular to the direction of density
modulation, i.e., p(r)=p(z)=p(z+g). Inserting the periodic
local density into the free energy expression, we obtain

8
BFIV = lf dzp(z)[In p(z) — 1]
8Jo

1 8
’ gfo dZ]p(Zl)f overlap dzop(23)Acxe(212),

range of 7,

(4)

where V is the volume of the system and A, is the excluded
area that comes from the integration of the Mayer function in
the plane normal to the density modulation. To determine the
equilibrium profile of the local density we first factorize it to
p(z)=pf(z) and then use the well-known Fourier expansion
method as follows:
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fz) =1+ >, S, cos(ikz), (5)
i=1

where p is the number density, f(z) is the positional distribu-
tion function, k is the wave number defined by k=27/g, and
Si,....,S, are the expansion coefficients. After substitution of
the local density [Eq. (5)] into the free energy density [Eq.
(4)] and using ¢=kz as a reduced variable, the ideal free
energy term reduces to

BFo/V=plnp—p+polf], (6)
where
21
A= o | denten i) )
mJo

Note that the functional o depends only on the expansion
coefficients but not the wave number. o is zero in the uni-
form phase, while it is positive and increases as the density
profiles become more peaked in the smectic phase. This
means that Eq. (7) favors the uniform density arrangement of
the nematic. The excess free energy contribution to Eq. (4)
becomes

1 2
ﬂFex/V= Ep Vexc

2]’[

p .
+ ZE S? dz )5 cos(ikz12)Aexc(212) s
i=1

overlap
range of 7,

(8)

where V,,. is the excluded volume of a triblock particle
given by V,,.=(D*w/4)L[1+7(A/L)]. The first term in Eq.
(8) is the excess free energy of homogeneous phase, while
the second part is responsible for smecticlike ordering via the
minimization of the excluded volume. The total free energy
now becomes

1
BEIV=pInp=p+polf]+ 2 p* Ve

2 n
P 2 )
+ ; dz, cos(ikzH)A .
4 E Si overlap 212 €08(ikz12)Acxc(212)
=l range of 7,

9)

The excluded area of a triblock particle with total length L,
diameter D, and cylinder length A can be determined simply
in a coordinate system, x"y’z’, where the 7’ axis is parallel to
the direction of the long symmetry axis of the triblock par-
ticle. It can be shown that

D’mld, —L-AR<z,,<-A
Aeelzl) =1D?m,  —A<z), <A (10)
D*ml4, A<z, <L+A..
The x"y’z’ coordinate system is applicable only if the density
modulation takes place along the 7’ axis. However, the den-
sity modulation may favor a different direction to minimize

most efficiently the hard body excluded region (or maximize
the free volume available for the particles). In this case, we
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encounter a tilted smectic (smectic C) structure, where it is
customary to introduce the tilt angle «, which is the angle
between the direction of density modulation and the parti-
cle’s long axis. To maintain the original free energy formal-
ism the excluded area must be recalculated in a rotated
frame, denoted as the xyz coordinate system, where the angle
between z and z’ axes is @. The connection between the two
coordinate systems can be expressed through the rotation
transformations y'=cosay-sinaz and z7’
=sin a y+cos a z. Straightforward but tedious calculation
gives the excluded area in the rotated frame, which now
depends on the tilt angle, too. In our calculations, we need
the Fourier components of the excluded area [see Eq. (9)].
The zeroth order term of the excluded area is always V.
irrespective of the value of the tilt angle, while the higher
order terms are given by

of x'=x,

) ) (.L+A
siny 1
2 2
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f dz cos(ikz)A (2, @)
overlap

range of z
X L+A
Jl(i—l) sin(i xz) —sin(iAx,)
) 2 2
=mD -
et 2%)
"

‘Il (iX]) Sirl(isz)
t4—
[29] [2%)

, i=1, (11)

where J,(x) is the first order Bessel function of the first kind,
while x;=k sin(a)D and x,=k cos(a) are new variables. In
this way, the free energy of the system can be written as

)Cz) - Sin(isz)

1
BEIV=pInp=p+polf]+2p Vese +

In principle, the equilibrium structure and the free energy of
a tilted smectic phase can be obtained by means of minimi-
zation of the above equation with respect to the wave num-
ber (k), the tilt angle (@), and the Fourier coefficients
(Sy1,...,S,), ie., (BFIV)Idk=0, (IBF/V)/da=0, and
(0BF1V)/13S;=0 (i=1,...,n). However, the wave number
and the tilt angle are coupled in our case and it is convenient
to minimize with respect to x; and x, instead of k and «.
To gain insight into the phase behavior of triblock particles

(.xl) . (.L"‘A
Ji\i—|sin| i
2 2

.X2> - Sin(isz)

Jl(ixl) Sin(isz)
+4— -

]1 (i.xl) Sin(iAX2)
+4— :

; (12)
[2%) [29] [2%)

we consider the effect of a very weak density perturbation
on the free energy of the form f(z)=1+S; cos(ikz) with the
S; close to zero. In this case, the free energy can be expanded
as a function of S; and can be written as F|,= F|y+aS?
in second order. The density at which the free energy of
the perturbed ( Flg,) and the homogeneous F|y phases
are the same is called the bifurcation density and it is given
by a=0. As a result the corresponding bifurcation equation
is

X1 X, ix;

The values xj(jz 1,2) at the bifurcation point can be obtained
from da/dx;=0, which is required to fulfill the minimization
condition on the free energy. It turns out that the lowest
density solution which corresponds to the bifurcation density
is obtained with the lowest order density modulation f(z)
=1+S, cos(kz), i.e., i=1 in all studied cases.

Before presenting the results, we render the quantities
dimensionless by assigning the length of the triblock particle
as the unit to measure all distances. In this way, our dimen-

=0. (13)

(2%)

sionless parameters are defined and denoted with asterisks as
follows: A"=A/L, D*=D/L, k'=kL, g"=g/L, xT:xl, and
xzzk* cos(a). We cannot use the packing fraction to make
the density dimensionless because the system of infinitely
thin triblock particles undergoes a nematic to smectic—A
phase transition at zero packing fraction due to zero particle
volume.'> While the volume of an infinitely thin particle is
zero, the excluded volume is not, and therefore we use an
Onsager-type dimensionless density c=BY'p, where the BY'
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is the second virial coefficient of the system of infinitely thin
triblock particles given by BY'=7LD?/8. We note that the
relation between the packing fraction and the dimensionless

density is very simple, 7=2A"c. Now we can define our
dimensionless free energy,

ff=clnc—c+colfl+c?| 1+7A"

J<ﬁ> , (.1+A* ) (i)
i\ sin| ;% sin(iA x,

ES

ix,

n
+2 87
i=1

*
Xy
=L

2

J .k Sin .A* *
+4 l(lxl) (l x2)

ix ixy

where f*=BFBS'/V+c In BY'. Note that the term ¢ In BY" in
the free energy does not effect the phase behavior of the
system. It is an interesting feature of Eq. (14) that the D
dependence of the free energy is completely embedded into
the reduced density and x; parameters. This means that the
free energy density depends only on A" at a given reduced
density because the other parameters such as the Fourier co-
efficients S; and xf are the results of free energy minimiza-
tion. The equilibrium values of x, and x, are used to express
the tilt angle (@) and the wave number as

X . [ x .
a= arctan( - *) and k = +2 +x22. (15)
x,D D

lll. RESULTS AND DISCUSSIONS

First, we present the results of the bifurcation analysis
for the system of triblock particles with zero cylinder length
(A"=0) in the reduced density—tilt angle planes. This repre-
sentation is advantageous because it shows the bifurcation
densities of three different types of phase transitions. The
first limit of a=0° corresponds to the nematic-smectic A
transition, the second limit of a=90° is for the nematic-
columnar transition, while for intermediate values of «, a
nematic-smectic C transition can exist. Figure 2 demon-
strates that the bifurcation density takes its lowest value at
zero tilt angle for all values of the diameter of the central
unit. This means that the system of parallel triblock particles
undergoes a phase transition from nematic (uniform) phase
to a smectic A phase upon compression and no nematic-
smectic C or nematic-columnar transitions take place in the
zero cylinder length limit. The nematic-smectic A transition
is found to be second order at cy;;=2.3 and kﬂ-% 8.99 in the
same way as in the system of hard cylinders. ™ The effect of
increasing length of the central unit on the bifurcation den-
sity is demonstrated in Fig. 3. The formation of the smectic
C is characterized by having the minimum bifurcation den-
sity occur at a nonzero tilt angle, which first occurs at ap-
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FIG. 2. Nematic-smectic bifurcation in the system of triblock hard particles
having a central cylinder of zero cylinder length (A"=0). The bifurcation
density as a function of tilt angle for cylinder diameters of D"=0.1 (con-
tinuous curve), D*=0.5 (short dashed curve), and D"=1 (long dashed
curve). The density, diameter, and lengths are in dimensionless units: ¢
=pB™, D*=D/L, and A*=A/L.

proximately A*=0.007. Moreover, the tilt angle of the bifur-
cation point increases continuously with the cylinder length
A”. In addition, the nematic-smectic C transition becomes
more stable as the difference between the bifurcation densi-
ties of smectic C and smectic A formation increases. The
effect of decreasing diameter is highlighted in Fig. 4 for
cylinders of length A*=0.02. In this case, the bifurcation
density of nematic-columnar ordering is lower than that of
the nematic-smectic A, but both of them are unstable as the
nematic-smectic C transition has the lowest bifurcation den-
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FIG. 3. Effect of varying length of the central cylinder on the nematic-
smectic bifurcation of the system of triblock hard particles at D"=1. The
bifurcation density as a function of tilt angle for cylinder lengths of A”
=0.007 (continuous curve), A*=0.008 (short dashed curve), and A*=0.01
(long dashed curve). The diamond symbol shows the lowest value of the
bifurcation density along each curve.
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FIG. 4. Effect of varying diameter on the nematic-smectic bifurcation of the
system of triblock hard particles at A*=0.02. The bifurcation density as a
function of tilt angle for various cylinder diameters, D=1 (continuous
curve), D"=0.5 (short dashed curve), and D*=0.1 (long dashed curve).

80 90

sity of ¢,;;=3.11 irrespective of the cylinder’s diameter. As a
result there is a second order phase transition between the
nematic and smectic C phases with the transition density
being identical to the bifurcation density. The reason why the
nematic-smectic C transition takes place at c,;;=3.11 for all
values of D" is that the dimensionless free energy and bifur-
cation equations [Eq. (13) and (14)] are only indirectly re-
lated to D” through Eq. (15) as the values of x, and x, are
always the same at the bifurcation point. Hence D" can only
affect the tilt angle and the wave number of smectic C phase.
In accordance with Eq. (15), it can be seen in Fig. 4 that the
tilt angle of the smectic C phase at the bifurcation point
increases with decreasing cylinder diameter (D”). The results
of the bifurcation analysis are summarized in Fig. 5, where
the reduced bifurcation densities of nematic-smectic A,
nematic-smectic C, and nematic-columnar transitions and the
tilt angle of the possible nematic-smectic C transition are
shown as a function of the cylinder’s length only, as the
cylinder’s diameter does not effect the reduced bifurcation
density. Five different regimes can be identified in cp-A"
plane. In the first regime of 0<A"<0.007, the system un-
dergoes a nematic-smectic A transition due to the low ex-
cluded volume of the central cylinder. In the intervals of
0.007<A"=<0.23 and 0.37<A"=<0.43, the nematic-smectic
C transition takes place, while the nematic-smectic A transi-
tion reentrants in the intermediate range of 0.23<A"<0.37.
Above A"=0.43 the nematic-smectic A transition is found to
be always stable since the particle’s shape approaches the
cylinder limit with no terminal rods (A"=1). In the entire
range of cylinder length, 0<A"<1, the nematic-columnar
transition is never found to be stable.

The stabilization of the smectic C phase has simple geo-
metrical reasons since the presence of the central cylinder
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FIG. 5. Nematic to smectic—A, nematic to smectic—C, and nematic to co-
lumnar bifurcations of the system of hard triblock particles for D*=1. (a)
The bifurcation concentration as a function of cylinder length (both in di-
mensionless units). The continuous curve corresponds to the nematic to
smectic—C bifurcation (ay,;>0), the short dashed curve shows the nematic
to smectic-A bifurcation (a4,;=0), while the long dashed curve is the
nematic-columnar bifurcation (ay,;;=90°). (b) The tilt angle at the nematic to
smectic—C bifurcation as a function of dimensionless cylinder length is plot-
ted with a solid curve. The geometrical prediction for the tilt angle of the
smectic C phase (tan a=~2A/D) is denoted by a dashed curve.

with nonzero length gives rise to an additional excluded vol-
ume cost in the packing entropy. As can be seen in Eq. (10),
the excluded area of two central cylinders is four times that
of the excluded area between the central cylinder and the
terminal rod. To minimize the excluded volume cost it is
favorable to form a layered structure where the central rods
collide more often with the terminal rods than with each
other in the layer. This can be achieved in the tilted smectic
C structure where the centers of the neighboring particles are
shifted relative to each other in the layer. We can also make
a rough prediction for the tilt angle with the help of excluded
area [Eq. (10)]. Assuming that two triblock particles are in
contact, the smectic phase is untilted (a=0) when the centers
of the bodies are at the same position along the z axis with
A= mD?. Increasing the distance between the centers along
the z axis up to z;,=A, the excluded area suddenly drops to
Ao o=mD?/4 giving a=~arctan(2A/D) as a geometrical ex-
pression for the tilt angle corresponding to the densest pack-
ing of the triblocks. Note that our geometrical prediction for
the tilt angle agrees with Eq. (15) as far as the diameter
dependence is concerned. However, geometry alone is not
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enough to account for the density dependence of the tilt
angle. The lower panel of Fig. 5 shows that the numerically
obtained tilt angle and the geometrical expression show the
same trend as a function of the cylinder’s length and that
tan a=2A/D can be considered as an underestimation of the
transition tilt angle. The bulk properties of the smectic C
phase are determined for a cylinder length of A"=0.02 for
various diameters and presented in Fig. 6. The tilt angle,
wave number, and free energy are shown as a function of
reduced density starting from the nematic-smectic C bifurca-
tion point. It can be seen that for all cases the smectic C
phase becomes less tilted with increasing density of the sys-
tem. As shown in Fig. 5, the tilt angle at the bifurcation
density is greater than the angle of greatest density, given by
tan &=~ 2A/D, thus explaining the density dependence of the
tilt angle. At a given density it can be seen that the tilt angle
increases with decreasing diameter according to Eq. (15), in
agreement with the geometrical argument (tan a~2A/D).
The wave number shows a very weak, but peculiar density
dependence as it can increase or decrease with density. For
low values of D" it is favorable to increase the distance be-
tween the smectic layers as the triblock particle has a small
volume, while the trend is opposite at D"=1 due to high
particle volume and the neighboring layers move closer to
each other with increasing density. As the free energy does
not have direct diameter dependence [Eq. (15)], only two
free energy curves can be seen in Fig. 6. Nematic and smec-
tic C phases have identical free energy at the bifurcation
point and the smectic C free energy is always lower than that
of the nematic phase with increasing density.

Our calculations show that the smectic C phase can be
stabilized in the system of parallel triblock particles. In con-
tradiction to previous speculations, smectic C formation does
not require hard particles to have a biaxial shape, such as the
zigzag and oblique cylinders. What are the implications of
our work for experiment? As far as designing colloids that
would exhibit the smectic C phase, we recommend thin cen-
tral cylindrical units and long rigid terminal units as a likely
candidate, as the packing fraction of the nematic-smectic C
phase transition can be very low as exemplified by the rela-
tion 7=2A"c. Low volume fractions are desirable because if
the transition density is very low, it is improbable that the
transition is preempted by another first order phase transi-
tion, such as the nematic-columnar or nematic-crystal transi-
tion. Furthermore, low volume fractions mean that the kinet-
ics of phase separation are rapid and that a gel phase is more
likely to be avoided. For example, our estimate for the pack-
ing fraction of nematic-smectic C transition is 0.15 at A"
=0.025, which corresponds to a dilute system and, further-
more, the system forms a nematic phase if the terminal rods
are enough long.

The main virtue of the second virial theory is its simplic-
ity and the fact that such theories, which have been used in
the past to describe the nematic-smectic A transition of rod-
like particles, are in accordance with simulations. Drawbacks
of the theory are that the orientational freedom of the par-
ticles and the contribution of higher virial coefficients are not
included into the theory. The first point is not really a prob-
lem as the nematic phase is usually very ordered close to
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FIG. 6. Bulk properties of the smectic C phase in the (a) tilt angle—density,
(b) wave number—density, and (c) free energy density—density planes. The
length of the central cylinder is the same in all cases (A"=0.02), while the
diameters of the central cylinder (D”) are equal 1 (continuous curve), 0.5
(short dashed curve), and 0.02 (dashed curve). The inset of panel (b) shows
the density dependence of the wave number at a higher resolution for D"
=1. In (c), the free energy of the nematic phase is denoted by a dashed
curve, while that of the smectic C phase is continuous. The density, wave
number, and the free energy density are in dimensionless unit: ¢
=p(wLD?/8), k*=kL, and f*=BFBS'/ V.

the nematic-smectic transition. While the higher virial coef-
ficients can have a significant impact on the stability of the
phases, inclusion of these terms would substantially increase
the computational burden. To justify the prediction of the
theory presented here simulation studies would be very
beneficial.
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