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ABSTRACT

Liquid crystalline phase transitions in virus and virus/polymer
suspensions

A dissertation presented to the Faculty of the Graduate School of Arts
and Sciences of Brandeis University, Waltham, Massachusetts

by Zvonimir Dogic

Using experimental, theoretical, and simulation methods, we investigate the
relationship between the colloidal intermolecular interactions and the resulting phase
diagrams. As a model system of rod-like particles we use bacteriophage fd, which is
a charge stabilized colloid. We are able to engineer complex attractive and repul-
sive intermolecular interactions by changing the ionic strengths of the suspensions,
attaching covalently bound polymers and adding non-adsorbing polymers. Using
standard molecular cloning techniques it is also shown that the aspect ratio of the
rod-like particle can be manipulated. In the limit of high ionic strength the fd virus
quantitatively agrees with the Onsager theory for the isotropic-nematic (I-N) phase
transition in hard rods. The role of attractive interaction on the nature of the I-N
phase transition is investigated. As the strength of the attraction is increased we
observe the isotropic-smectic (I-S) phase transitions. Using an optical microscope
we follow the kinetics of the I-S phase transition and observe a whole range of novel
structures of unexpected complexity. We also investiage the influence hard/spheres
or polymer on the nematic-smectic phase transition. We conclude that adding small
spheres stabilizes the smectic phase and destabilizes the nematic phase.
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Chapter 1

Introduction

One of the basic goals of statistical mechanics is to predict the collective phenom-

ena and phase behavior arising from the interaction potential between individual

molecules. It was known for a long time that the interactions between two molecules

can be separated into a short range repulsive (steric) interactions and other long

range interaction due to the van der Waals force [1]. The basic question that follows

is that of the relative importance of the short range and long range parts of the

intermolecular potential in determining the phase behavior of the molecules. To

elucidate this issue the behavior of hard spheres and hard spherocylinders, highly

idealized systems which only have the repulsive component of the intermolecular

potential, have become very important over the past 50 years. The interaction en-

ergy between two hard particles is either zero if they do not overlap, or infinity if

they do overlap.

The first step in understanding ordering transitions in hard particles was

taken in 1949, when Onsager in his seminal paper considered the phase behavior of

hard spherocylinders [2]. He convincingly showed that hard core repulsion between

highly anisotropic spherocylinders is sufficient to produce a stable liquid crystalline
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nematic phase. The nematic phase is characterized by long range orientational order

and short range positional order. At about the same time, Kirkwood speculated that

the extremely simple system of hard spheres undergoes a liquid to crystal phase

transition. This speculation was the subject of much debate in the 1950’s, but

subsequent computer simulations have unequivocally shown that the hard spheres

undergo a first order liquid to crystal phase transition [3, 4]. The next step came

when theory and computer simulations showed that hard spherocylinders also form

a stable smectic phase [5, 6]. The smectic phase is characterized by one dimensional

long range solid-like order in the direction of the alignment of the rods and short

range liquid-like order in other two directions. Today it is widely accepted that the

phase ordering transitions of liquid and solid systems is dominated by the shape

of the repulsive part of the intermolecular potential between individual particles.

A very general consequence of the simple interaction potential of hard particles is

that all allowed energy states are equal and therefore all phase transitions in hard

particles are entirely entropy driven. An experimental signature of entropy driven

transitions is independence of temperature. A summary of the phase transitions in

the system of hard particles is given in Fig. 1.

Colloids are the only experimental systems which approximate the behavior

of hard particles closely enough that they undergo all the ordering transitions de-

scribed above. This is due to the fact that at the colloidal length scale it is possible

to engineer the interaction potential between two colloids using various chemical or

physical modification schemes, while on the molecular scale it is impossible to avoid

the ever present long range attractions of van der Waals origin. Today the synthesis

of highly monodisperse spherical colloids made of insoluble polymers whose inter-

action closely approximates hard sphere potential is fairly routine. Experiments on

these systems have provided the first experimental confirmation that the assembly
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of hard spheres undergoes a liquid to crystal transition [7].

In contrast to spheres, various attempts to chemically synthesize rods have

not been so successful. Every chemical synthesis of a hard-rod system invariably

results in a wide distribution of rod lengths, which significantly affects the phase be-

havior of the system. We have circumvented this problem by using rod-like viruses

TMV, fd, Pf1 and M13 that have a biological rather then a chemical origin. The dis-

tinct advantage of these viruses over chemically synthesized rods is that Nature has

engineered them to be identical to each other, which results in very high monodis-

persity. Theory and computer simulation predict that hard rods form isotropic,

nematic and smectic phases with increasing concentration [8]. Because of their high

monodispersity rod-like viruses are the only experimental hard rod system presently

available whose phase behavior agrees with this theoretical prediction [9, 10]. In this

thesis we study both theoretically and experimentally some aspects of ordering in

rod-like fd viruses.

The outline of this thesis is as follows. In Chapter II we present the Onsager

theory which forms the conceptual basis for most of this thesis. The theoretical

results are compared with the experiments on the bacteriophage fd and good quan-

titative agreement is found for rods in high ionic strengths aqueous suspensions.

This justifies using fd as a model system which approximated the behavior of hard

rods. In Chapter III we introduce the experimental system of fd virus. We show

that we are able to experimentally manipulate important variables determining the

phase behavior. Using standard methods of molecular biology we are able to alter

contour length of the virus. The effective diameter of the rod is altered by covalently

covering the surface of the virus with poly-(ethylene glycol) (PEG) polymer. These

modifications will allow us to test fundamental theories of liquid crystal ordering

and demixing in monodisperse and bi-disperse rod-like suspensions. Bacteriophage

fd forms a cholesteric instead of the nematic phase. In the cholesteric phase the av-
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isotropic nematic smectic A

liquid crystal

Figure 1.1: An illustration of the stable phases that appear in a system of hard
particles. All phase transitions in hard particle fluids are temperature independent
and concentration is the only parameter that determines the phase diagram. Hard
spheres undergo liquid to crystal phase transition with increasing concentrations,
while hard spherocylinders form stable isotropic nematic and smectic phases with
increasing concentration. Attractive interactions between spheres are necessary to
induce a dilute vapor to dense liquid phase transition. Theoretically these attrac-
tions are easily incorporated as a perturbation once the nature of the ground state
(hard sphere liquid) is well understood.
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erage alignment of the molecules (nematic director) forms a helical superstructure.

As discussed in detail in chapter IV the cholesteric phase is a very slight perturba-

tion of the nematic phase and therefore the Onsager theory hold equally well for the

isotropic-nematic (I-N) and the isotropic-cholesteric (I-Ch) phase transitions. Al-

though in this thesis we experimentally study the (I-Ch) transition we expect all our

results to hold for the (I-N) transitions as well. Therefore we use the I-N and I-Ch

terms interchangeably in this thesis. In Chapter IV we investigate the microscopic

origin of the cholesteric phase in fd virus by measuring the continuum properties of

the cholesteric phase.

In Chapter V we turn our attention to the phase behavior of hard rods that

interact through both attractive and repulsive interactions. As the strength of the

interaction is increased we no longer observe the usual isotropic-nematic phase co-

existence. Instead the system exhibits isotropic-smectic phase co-existence. We are

able to observe a number of novel kinetic structures during this process of phase

separation. Our visual observations are summarized in Chapter VI. In chapter

VII we focus our attention on the nematic-smectic phase transition and how this

phase transitions is perturbed by the presence of hard spheres or interpenetrating

polymers. We investigate this transition theoretically and with the aid of computer

simulations.

In this thesis we observe and study both theoretically and numerically a range

of novel structures that are formed in a mixture of rods and polymers or rods and

spheres. The structure of some of the phases we observe in a rod/sphere mixture are

very similar to the structure of amphiphilic (lipid, surfactant, copolymer) systems.

However, unlike amphipilic systems where imiscible parts are covalently attached,

the rod/sphere and rod/polymer mixtures are free to bulk phase separate at all

times. Therefore it is surprising that the rod/sphere mixtures undergo microphase

separation under certain conditions. Another surprising aspect, in line with the

previous results on ordering in hard particle fluids, is the complexity of the phase

5



diagram which results from the molecular species interacting with a very simple

potential. Experiments on the virus/polystyrene mixture and virus/polymer are

an example of an entropy driven microphase separation. All this provides further

evidence for the importance of the steric (entropic) interactions in determining the

phase behavior.
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Chapter 2

Isotropic-nematic phase transition

in hard rods and comparison to

experiments on fd virus

2.1 Introduction

In this chapter we summarize the Onsager theory of the isotropic-nematic (I-N)

phase transition of hard rods. The extensions of the Onsager theory to include the

effects of charge and flexibility of the rods are presented. Since the Onsager theory

is quantitatively valid only for very long rods (L/D > 100) we discuss the scaled

particle theory which extends the validity of the Onsager theory to smaller aspect

ratios. Finally an approximate phase diagram for charged, semi-flexible rods with

finite L/D ratios is calculated. This phase diagram is compared to the experimen-

tally available data for the I-N phase transition in the semi-flexible fd virus. At ionic

strengths higher than 100 mM where ratio of the rod length to diameter L/Deff is

large the experiments quantitatively agree with the theory. On the other hand, at

low ionic strengths there is a considerable difference between the experiment and the

theory. It is speculated that this disagreement is due the counterions disassociated
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from the ionic groups on the virus surface, which are not taken into account in the

theory.

2.2 Entropy driven ordering and the Onsager the-

ory

At the second virial approximation the most general expression for the free energy

of anisotropic hard particle fluid is :

F

kbT
=

Fid + Fex

kbT
=
∫

V
dΩdrρ(Ω, r) ln(ρ(r,Ω)) − (2.1)

1

2

∫

V
dr1dΩ1

∫

V
dr2dΩ2ρ(r1,Ω1)ρ(r2,Ω2)Ψ(r1, r2,Ω1,Ω2)

where Ψ(r1, r2,Ω1,Ω2) is a Meyer-Meyer overlap function whose value equals -1 if

there is any overlap between two hard-particles located at positions r1 and r2 and

angles Ω1 and Ω2, otherwise it’s value is equal to zero. ρ(r,Ω) is the probability of

finding a particle at position r, which points in the direction Ω. On the one hand,

approximating free energy only to the second order in density fails to quantitatively

describe the system of hard spheres already at density ρ ≈ 0.05 [11]. Since the

liquid to crystal transition in hard spheres occurs at volume fraction close to 0.5

it is not reasonable to expect that Eq. 2.1 will describe this transition. On the

other hand Onsager was the first to recognize that Eq. 2.1 is essentially exact for

isotropic rods and the isotropic-nematic phase transition when L/D → ∞ [2]. As

will be shown the reason for this is that the I-N phase transition occurs at a volume

fraction ρ ≈ 4D
L
. Hence, the larger the aspect ratio, the lower the volume fraction

of the I-N transition and therefore expansion of the free energy in density becomes

more accurate.

In the Onsager theory the system is assumed to be spatially uniform and
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therefore ρ(r,Ω) = (N/V )f(Ω) where N is the number of rods and V is the volume

of the system. Since f(Ω) indicates the probability that the rod is pointing at a

solid angle Ω it should be normalized as follows :

∫

f(Ω)dΩ = 1. (2.2)

Once the probability distribution function is known it is easy to calculate the nematic

order parameter (S) using the following relation:

S = 2π
∫ π

0

(

3

2
cos(θ) − 1

2

)

f(θ) sin(θ)dθ. (2.3)

By minimizing Eq. 2.1 with the respect to the distribution function f(Ω) we obtain

the following integral equation :

log[4πf(θ)] = λ − 8ρ

π

∫

sin(θ)f(θ)dθ, (2.4)

where ρ = π
4
L2DN

V
. This integral equation can not be solved analytically but it has

been solved with two different numerical procedures which yield almost identical

results for the equilibrium distribution function [12, 13]. Although the numerical

solution yields the most accurate results it is also possible to proceed by assuming

a form of the orientational distribution function :

f(α, cos(θ)) =
αcosh(α cos(θ))

4πsinh(α)
. (2.5)

Using this ansatz first introduced by Onsager in the second virial approximation to

free energy (Eq. 2.1) and evaluating the integrals for the case of hard rods we obtain

an expression for the free energy which is a function of dimensionless concentration

ρ and orientation parameter α:

F (α, ρ) = ρ log(ρ) + σ(α)ρ + ξ(α)ρ2

9



σ(α) = log

(

α cosh(α)

4π sinh(α)

)

− 1 +
arctan(eα) − arctan(e−α)

sinh(α)

ξ(α) =
2I2(α)

sinh2(α)
(2.6)

Although this solution is somewhat different from the numerical solution of Eq. 2.4,

the advantage of assuming the probability distribution (Eq. 2.5) is that we obtain

an analytical expression for the free energy (Eq.2.6).

It is important to note that in any hard-particle fluid, due to the simplicity of

the interaction potential, the energy of any allowed configuration is simply propor-

tional to nkT with n being the number density of particles. Because of this simple

fact, the minimum of free energy of a hard particle fluid F = E−ST = T (α−S) (α

is a constant) is equivalent to the maximum of entropy. Furthermore, the resulting

phase diagram is temperature independent (athermal) because both α and S are

independent of temperature. Ordering transitions in hard-particle fluids are still

possible because the expression for entropy, or equivalently free energy, splits into

two parts. The first integral in Eq. 2.1 is the ideal part of the free energy and always

attains a minimum value for the uniform probability distribution ρ(r) = constant.

Therefore this contribution to the free energy always suppresses an ordering tran-

sition. The second integral in Eq. 2.1 represents the second virial approximation

for the interaction free energy, which under certain circumstances is lower for an

ordered state. Therefore the interaction part of free energy drives the system to-

wards ordering. The actual location of the ordering transition is determined from

the competition between the ideal and the interaction contribution to the total free

energy.
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2.3 Onsager theory extended to charged and semi-

flexible rods

The Onsager theory outlined in the previous section can be extended to the case

where the colloidal rods have a surface charge. The first treatment of the isotropic

phase transition of charged rods can be found in the original paper by Onsager [2].

The extension of it to the anisotropic phase can be found in paper by Stoobants et.

al. [14]. Besides the hard core repulsion, charged rods have a long range repulsive

interaction of the following form :

Uel(x)

kT
=

A′e−κ(x−D)

sin(γ)
(2.7)

where x is the closest distance between two charged rods, A′ is the proportional-

ity constant obtained by solving the Poisson-Boltzman equation, κ−1 is the Debye

screening length and γ is the angle between two rods. In the case of charged rods

there are contributions to the second virial coefficient from both the hard core ex-

cluded volume interaction and the long range electrostatic repulsion interaction.

These two contribution can be calculated separately as follows

β(γ) = −2DL2 sin(γ) + 2L2 sin(γ)
∫ ∞

D
(e−

Uel(x)

kT − 1)dx (2.8)

= −2DL2 sin(γ) − 2κ−1L2 sin(γ)

(

ln

(

A′

sin(γ)

)

+ CE + E1

(

A′

sin(γ)

))

.

Integrating function β(γ) over a uniform orientational distribution function which

describes the isotropic phase we obtain the following expression for the second virial

coefficient :

Biso
2 =

1

4
πL2Deff =

1

4
πDL2 +

1

4
πκ−1L2(ln A′ + CE + ln 2 − 1

2
) (2.9)

11



0.01 0.1 1

50

100

150

200

250

300

350

400

450

500

 surface charge 1 e/A
 surface charge 2 e/A
 surface charge 5 e/A

 

 

D
ef

f [
A

]

ionic strength [mM]

Figure 2.1: The effective diameter for a charged rod calculated from Eq. 2.9 for
a range of physical ionic strengths. The physical characteristic take for diameter
Dbare = 66Å is that of the fd virus. The value of Deff barely changes as the surface

charge is changed from 1e−/Å to 10e−/Å. Experiments indicate that the surface
charge is about 2e−/Å [15]

Therefore the thermodynamics of charged rods in the isotropic suspension will be

equivalent to the thermodynamics of thicker hard rods with the effective diame-

ter (Deff). On the other hand if the cluster function β(γ) is integrated over an

anisotropic distribution function then the relationship given by Eq. 2.9 is no longer

exact. The reason for this is that the electrostatic energy is lower for perpendicular

rods then for parallel rods. Therefore the charge effectively destabilizes the nematic

phase by shifting the I-N transition to higher concentrations and reducing the order

parameter of the nematic phase coexisting with the isotropic phase. However, most

biopolymers (including fd virus) are highly charged in which case it turns out that

the electrostatic “twisting” effect is insignificant compared to the excluded volume

interactions. Therefore from now on we approximate Deff in the nematic phase by

Deff of the isotropic phase. This is reasonable for co-existing phases but we expect

this approximation to get progressively worse with increasing concentrations.

The flexibility of the rods is characterized by the persistence length. The
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persistence length is the length along the chain after which the direction of the

chain becomes uncorrelated. The effect of semi-flexibility on the isotropic-nematic

phase transition has been studied by Khokhlov and Semenov [16]. For semi-flexible

rods besides orientational and translational entropy it is also necessary to take into

account the internal configurations of the semi-flexible chain. This modifies the

entropy term in the Eq. 2.1 :

F(f(θ), ρ)

NkbT
=

Fideal + Fex

NkbT
=

L

2P

∫

f 1/2(cos(θ))∇f 1/2(cos(θ))dΩ + Fex(f(θ), ρ)

(2.10)

where ∇ is the Laplacian operator on the surface of the sphere. Eq. 2.10 has been

solved in the limit of almost rigid rods (P�L) and very flexible rods (L�P) [17, 16].

It is possible to empirically interpolate between these two solutions and obtain

numerical approximation for the configurational entropy for rods with arbitrary

persistence length as was done by Hentscke, Odijk, and Yang et. al. [18, 19, 20]. In

this thesis we use the following approximation for the entropy of a single semi-flexible

rod :

σ(α,
L

P
) = ln(α) − 1 + πe−α +

L

6P
(α − 1) +

5

12
ln
(

cosh
(

L

P

α − 1

5

))

(2.11)

which was given by the latter authors. The entropy per particle increases with in-

creasing the anisotropy of the orientational distribution function through parameter

α.
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2.4 Scaled particle theory of semi-flexible rods for

Isotropic-Nematic phase transtion

Scaled particle theory for the system of hard rods was developed by Cotter and

coworkers [21, 22]. The main advantage of the scaled particle is that it takes into

account third and all higher virial coefficients in an approximate way. Therefore this

theory should be more adequate at describing the data at higher concentration of

rods or equivalently rods with lower L/D ratios. The free energy derived by Cotter

is :

F (δ, φ, α)

NkbT
= ln(φ)+ln(1−φ)+σ(f(φ))+Π2(δ, α)

φ

1 − φ
+

1

2
Π3(δ, α)

(

φ

1 − φ

)2

(2.12)

where φ is the volume fraction of rods

φ =
Nrods

V

(

π

6
D3 +

π

4
D2L

)

. (2.13)

The coefficients Π2 and Π3 are given by the following expressions:

Π2(δ, α) = 3 +
3(δ − 1)2

3δ − 1)
ξ(f(α)), (2.14)

Π3(δ, α) =
12δ(2δ − 1)

(3δ − 1)2
+

12δ(δ − 1)2

(3δ − 1)2
ξ(f(α)) (2.15)

and parameter δ is the overall length over diameter ratio of the spherocylinder given

by

δ =
L + D

D
. (2.16)

The functions ξ(α) and σ(α) are the same translational and orientational entropy

terms used in the Onsager theory (Eq. 2.6). We note that the expression for the

free energy (Eq. 5.4) reduces to the Onsager second virial approximation for very
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long rods (δ → ∞). On the other hand for spherical particles (δ = 1) it reduces to

the Percus-Yevick or scaled particle theory free energy for hard spheres.

2.5 Results

In the previous two sections we briefly summarized the Onsager theory and its

extensions to the cases of surface charge, semi-flexibility of the rods, low L/D ratio

and high concentration. As was previously done, the most convenient variable to

formulate the Onsager theory is the dimensionless concentration

ρ = Biso
2

N

V
=

π

4
L2D

N

V
=

L

D
φ (2.17)

where φ is the volume fraction of the rods and Biso
2 = π/4L2D is the second virial

coefficient for suspension of hard rods in isotropic solution. By performing the

stability analysis of the Onsager equation Kayser and Ravenche found out that the

isotropic phase becomes unstable towards orientational fluctuations when ρ = 4 [23].

It follows that within the Onsager theory the volume fraction of the hard rods

at the I-N transition scales as φ = 4D
L
. Therefore the longer the rods are, the

volume fraction at the I-N transition decreased and the accuracy of the second

virial approximation increases. Numerical calculations of the second and third virial

approximations indicate that Onsager theory is quantitatively correct for rods with

L/D > 100 [24].

However, the second order transition is preempted by a first order phase

transition. Numerically minimizing the Onsager free energy with respect to the ori-

entational distribution function and subsequently solving the co-existence equations

yields the following concentration of the co-existing isotropic and nematic phases,

ρiso = 3.289, ρnem = 4.192, S2 = 0.7922, (2.18)
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as solved by Herzfeld et. al., Lekkerkerker et. al., and Chen [12, 13, 25]. On the

other hand the Onsager trial function (Eq. 2.5) yields the following co-existence

concentrations :

ρiso = 3.339, ρnem = 4.487, S2 = 0.848. (2.19)

By comparing exact numerical result with the Onsager approximation we observe

a difference in both concentrations of the I-N transition and the nematic order

parameter (S2) of the nematic phase co-existing with the isotropic phase.

The most complete study of the influence of the semi-flexibility on the isotropic-

nematic phase transition was presented by Chen [25] who numerically minimized

Eq. 2.10 and subsequently calculated the co-existence concentrations. His results

and the results obtained by using the Onsager approximation for the orientational

distribution function (Eq. 2.5) are shown in Fig. 2.2 for rods with difference degrees

of semi-flexibility.

From figure 2.2a we conclude that increasing flexibility destabilized the ne-

matic phase by displacing the I-N transition to higher volume fraction. Increasing

the flexibility also drastically reduces the width of the concentration difference be-

tween the co-existing isotropic and nematic phases the and the order parameter of

the nematic phase as is shown in Fig. 2.2b and Fig. 2.2c respectively. The Onsager

approximation (Eq. 2.5) for the ODF qualitatively agrees with the “exact” numerical

results. We observe that the difference in ρiso between the “exact” numerical result

and the results obtained with approximate ODF is never larger then 5%. On the

other hand, if we compare the nematic order parameter (S2) at the I-N transition

and the co-existence width (W ) we observe a large quantitative disagreement (up to

30%) between two different solutions of Eq. 2.10. This demonstrates that compar-

ing I-N co-existence concentrations between a theory and an experiment does not

constitute a sensitive test of the theory. For a stringent test of the theory it is also
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Figure 2.2: Concentration (ρiso = (4/π)L2D(N/V )), number density difference be-
tween isotropic and nematic phase (W = Cn/Ci − 1) and order parameter (S2) of
the nematic phase co-existing with isotropic phase as a function of the flexibility
of the particle P = L/lp. The full line are the exact numerical results within the
second virial approximation while, the dashed line are the results obtained by using
the Onsager approximation for the orientational distribution function (Eq. 2.5). In
all the figures the aspect ratio of the rod is fixed at 100 and the persistence length
lp varies from infinity to 25.
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necessary to measure the order parameter (S2) of the nematic phase. An example

of this will be shown in the chapter 5, which deals with the effect of attractions on

the I-N transition. In his paper Chen compares his solution with the solution of

the Khokhlov and Semenov who also use Onsager approximation to the ODF. The

result of Khokhlov and Semenov seemingly agrees much better with “exact” results

than what our calculation shows in Fig. 2.2. The reason for this is that Khokhlov

and Semenov besides using Onsager approximation for the ODF also approximate

the excluded volume ξ(α) by expanding it in powers of α. These two approximations

fortuitusly cancel each other and the final result seemingly agrees better with the

“exact” numerical solution.

If the flexibility of the rods is increased further a limit is reached where the

chain has an overall comformation of the flexible coil which in turn is composed of

many persistence length units. If these units themselves satisfy the Onsager criterion

(L > lp > D) the problems can be easily solved by rescaling the exclude volume

interaction. In this limit it is natural to describe the problem in dimensionless units

rescaled by the persistence length :

ρp = (π/4)lpLD(N/V ) = P/Dφ. (2.20)

Using the Onsager ODF we obtain the following coexistence concentrations :

(ρp)iso = 5.409 (ρp)nem = 6.197 S2 = 0.610. (2.21)

On the other hand the numerical solution yields the following coexistence concen-

trations :

(ρp)iso = 5.124 (ρp)nem = 5.509 S2 = 0.46. (2.22)

Here again we note that the values for the coexistence concentrations are in much

better agreement with each other than the values for the nematic order parameter.
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Figure 2.3: Full lines in figure A show the I-N coexistence concentrations as the
function of the aspect ratio (L/D) as predicted by the scaled particle theory for
rigid rods. The dashed line represents the I-N co-existence as predicted by the
theory that only includes second virial coefficient. The circles are the results of
the computer simulations [8]. The filled squares at low L/D represents the results
from the same work but the coexistence width was too narrow to be measured.
The coexistence is plotted in terms of real volume fraction φ = πD3/6 + LD2π/4
while the total aspect ratio including the hemispheres is L/D+1. Figure b shows
the predicted width of the co-existence regions W = Cn/Ci − 1 as predicted by the
scaled particle theory and the second virial coefficient for different L/D ratio.
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Figure 2.4: The I-N co-existence concentrations measured in an aqueous suspension
of fd virus by Tang and Fraden [27]. The full line is the numerical solution of Chen for
the I-N co-existence which treats excluded volume interactions at the second virial
while the orientational distribution function is calculated exactly. The dashed line
is the scaled particle solution for the I-N co-existence in which all virial coefficients
are included in an approximate way and orientational distribution function has an
approximate form given by Eq. 2.5. The scale on the right side indicates the effective
diameter of a rod at at I-N transition for a given ionic strength.

The Scaled particle expression (Eq. 5.4) incorporates all the higher virial

coefficients in an approximate way. Comparing it’s results with the solution ob-

tained through the second virial approximation allows us to test for which range

of L/D ratios is the second virial approximation quantitatively valid. The results

are shown in Fig. 2.3. At L/D=45 the second virial approximation yields the I-N

co-existence concentrations that are 10% different from the scaled particle result.

We conclude that for rods with L/D > 75 the second virial approximation quan-

titatively describes the I-N transitions in hard-rods. Currently available computer

simulation [8] results agree very well with the scaled particle theory [26]. The scaled

particle theory predicts that the width of the coexistence region decreases rapidly

with decreasing L/D of the rod.

In figure 2.4 the experimental data points for the isotropic-nematic coexis-
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tence concentrations for the semi-flexible virus fd are given as measured by Tang

and Fraden [27]. The physical characteristics of the fd virus are the contour length

of 880 nm, bare diameter of 6.6 nm, aspect ration L/D ≈ 130 and the persistence

length P = L/lp ≈ 0.4. The colloidal stability of the virus is preserved due to the

fact that it has a very high surface charge. The Deff for the dilute isotropic suspen-

sion of the fd rods is shown in Fig. 2.1 for three different surface charges. Due to

the non-linear nature of the Poisson-Boltzman equation changing the surface charge

by an order of magnitude has minimal effect on the resulting Deff. The titration

experiments indicate that the surface charge of fd is about 1e−/Å [15]. Figure 2.4

shows that increasing ionic strength increases the concentration of the viruses at

the I-N transition. On the other hand, increasing ionic strength increases L/Deff

which in Onsager theory should decrease the volume fraction of the rods at the I-N

transition. The discrepancy can easily be understood if one looks at the condition

for instability of the isotropic phase:

4/π L2Deff(N/V ) = 4. (2.23)

The concentration in figure 2.4 is not proportional to the effective volume

fraction but to the number density of the virus. If Deff is decreased with the length

of the rod remaining constant, it follows that the number fraction of the virus at

the transition has to increase so that condition for the nematic instability (Eq. 2.23

) is still satisfied.

The experimental data points are compared to the numerical solution of

Chen [25] who approximates the excluded volume interaction by the second virial

coefficient and treats the ODF in an “exact” numerical way. When comparing the

experiments with the theory we take into account charge by using Deff plotted in

Fig. 2.1 instead of the bare diameter. At the first sight the agreement between

the theory and the experiment is quite good. However there is reason to believe

that this agreement is fortuitous at low ionic strength. For example at 1 mM ionic
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strength Deff ≈ 60nm which results in the aspect ratio L/Deff ≈ 15. Figure 2.3

clearly shows that for these small aspect ratios third and higher virial coefficients

can not be ignored. Indeed the results of the scaled particle theory which include

these higher coefficients show that the I-N transition is located at significantly lower

concentrations than what is found by the experiments and Chen’s theory. On the

other hand the agreement between the scaled particle theory, the experiments and

the theory of Chen is much better at high ionic strengths since L/Deff is larger

(at 100mM L/Deff ≈ 83) and therefore the excluded volume interactions are more

accurately approximated by the second virial coefficient.

We note that the results from the scaled particle theory shown in Fig. 2.4

should also be treated with a degree of scepticism. To compare the scaled particle

theory with experiments on charged rods we use the effective diameter of the rod.

However the concept of Deff introduced in Eq. 2.9 is only justified for conditions

for which the second virial coefficient is quantitatively valid. As was explained

earlier the second virial coefficient does not provide a satisfactory treatment of

excluded volume interactions of fd virus at low ionic strength. There is a recent

theoretical attempt to extend the scaled particle theory to charged particles [28, 29].

Unfortunately this theory does not interpolate to Onsager theory for dilute rods

as does the scaled particle theory for hard rods. We also note that the twisting

factor ignored in our treatment of Deff for fd is strongest at low ionic strength [14].

This effect displaces the I-N transition to higher densities. We speculate that the

disagreement between the theory and the experiment at low ionic strengths stems

from the fact that we ignore the ions dissociated from the charged surface of the

virus. Assuming surface charge of 1e−/Å a simple calculation yields that at virus

concentration of 5 mg/ml the dissociated counterions are present at concentration

of 3mM. These dissociated counterions increase the ionic strength which results in

displacement of the I-N transitions to higher virus concentration.
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2.6 Conclusions

We have started this chapter by summarizing the Onsager theory for the entropy

driven I-N transition. To compare the theory to the experimental results on fd virus

in addition to hard core repulsion we had to account for the surface charge and for the

semi-flexibility of the virus. The limits of the second virial approximations are tested

by comparing it to the scaled particle theory which account for third and higher

virial coefficients. The data on fd virus compares very well with the Onsager theory.

However the approximations in the Onsager theory, namely L/D > 50 fail at low

ionic strength. Therefore it is surprising that the theory agrees with the experiment

even in this regime where the theory is know to fail. In conclusion the fd virus

behavior can be quantitatively described as a hard rod with an effective diameter

in the regime of high ionic strength. On the other hand there is no comprehensive

theory which would take into account all the necessary effects, namely third virial

coefficient and surface charge, to described quantitatively the I-N transition in fd

at low ionic strength. As was previously emphasized a more stringent test of the

theory is to measure the order parameter of the nematic phase co-existing with the

isotropic phase. Such measurements using small angle x-ray scattering are currently

under way in our laboratory [30]
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Chapter 3

Bacteriophage fd as a versatile

model system of rod like colloids

3.1 Introduction

Observation of the nematic phase in aqueous suspensions of rod-like TMV (Tobacco

Mosaic Virus) served as an inspiration for Onsager to write his seminal paper on

the isotropic-nematic (I-N) phase transition in hard rods (Onsager 1949). Ever

since then biopolymers (DNA, TMV, fd) have served as important model systems

of hard rods and have often been used to test the Onsager theory and its various

extensions [31, 32, 33]. In section 3.2 of this paper we briefly outline the advantages

of using the semi-flexible rod-like fd or closely related M13 virus as a model system

of hard rods. We demonstrate that using standard procedures of molecular cloning

it is possible to construct genetically modified viruses with widely varying contour

length. These viruses are monodisperse enough to form a stable smectic phase. In

section 3.3 we outline the synthesis of a fd-polymer complex and show that polymers

covalently attached to the virus effectively increase the diameter of the rods. By

changing the ionic strength it is possible to observe the crossover from the regime

where the rods are electrostatically stabilized to where they are sterically stabilized
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by repulsion between virus-bound polymers. This synthesis is a convenient way to

alter the diameter of the rod and enables us to study bi-disperse rod suspensions

with different diameters.

3.2 fd virus as a versatile model system of hard

rods

TMV and fd viruses form, in order of increasing concentration of rods, a stable

isotropic, nematic or cholesteric, and smectic phase [9, 10, 34]. These two ex-

perimental colloidal systems are the only ones that follow the sequence of liquid

crystalline phase transitions that have been predicted by the theory and computer

simulations of hard rods [8, 35]. The paucity of systems exhibitng smectic phases is

presumably due to polydispersity, which is inherently present in all other polymeric

and colloidal experimental systems due to the fact that they are chemically synthe-

sized. In contrast to chemical synthesis, Nature uses DNA technology to produce

viruses that are identical to each other, which results in highly monodisperse viruses.

This high monodispersity of virus suspensions is the property that makes them an

appealing system to experimentally study the phase behavior of hard rods.

However, there are several important disadvantages that viruses have com-

pared to synthethic rod-like polymers. Firstly, although rod-like viruses have very

well defined lengths and diameters, studies of how the phase behavior depends on

the length to diameter ratio are non-existent for virus suspensions. Secondly, the

viruses are charged stabilized and therefore their interactions are not truly hard rod

interactions, but in addition to steric repulsion, have a long range soft repulsion.

It is important to note that because of the small diameter of the virus the range

of this electrostatic repulsion is always comparable to the hard core diameter for

the range of ionic strengths for which the stability of the virus against aggregation

is not compromised. Also, because of its protein structure it is impossible to de-
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crease the surface charge by dissolving it in apolar or weakly polar solvents and

preserve the colloidal stability of the virus. It has also been observed that the virus

aggregates in an ionic solution of multivalent cations. In this section we show that

using standard biological methods it is possible to alter the contour length of the

virus while preserving the monodispersity of the virus. In the subsequent section

we show that by covalently attaching polymer onto the virus surface we can alter

the effective diameter of the virus, and we have achieved stability of the virus even

in the presence of multivalent cations. It is our hope that the introduction of these

methods will make the viruses a more appealing model system with which to study

the phase behavior of rods.

We note that M13 virus with length (L) diameter (D) (L/D≈130) and con-

struct M13-Tn3-15 (L/D≈240) were used in the studies of the concentration depen-

dence of rotational diffusion almost 20 years ago [36]. However, this potentially

powerful method was never pursued in subsequent studies. M13 virus is genetically

almost identical to fd and has the same contour length with coat proteins differing

by only a single amino acid; negatively charged aspartate in fd (asp12) corresponding

to neutral asparagine in M13 (asn12) [37]. This change in a single amino-acid alters

the surface charge by about 30 percent and M13 can easily be distinguished from

fd by gel electrophoresis. All our clones have their origin in M13 virus, which also

means that they have lower surface charge than fd wild type (wt) system.

Since all available data indicates that the length of the virus is linearly pro-

portional to the length of the DNA contained in the virus, the virus length can be

extended by simply introducing foreign DNA into M13 wt DNA using restriction en-

donucleases [38]. However, during large scale preparation we found that the mutant

virus would often quickly revert to it’s wild type form by deleting the foreign DNA.

Another disadvantage of this method is that it is impossible to construct clones

that are shorter than M13 wt. Because of these reasons we used a well documented

phagemid method to prepare our rod-like viruses with variable contour length [39].
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Figure 3.1: Optical micrographs of smectic phases of three different M13 constructs
and fd wt (c). The periodic pattern is due to smectic layers that are composed of
two dimensional liquids of essentially parallel rods, as indicated in the cartoon on
the right. From left to right, the contour length of the rod-like viruses forming the
smectic phase are 0.39 µm, 0.64 µm, 0.88 µm, and 1.2 µm. The smectic spacing
measured from optical micrographs is 0.40 µm, 0.64 µm, 0.9 µm and 1.22 µm from
image (a) to (d) respectively.

This method allows us to grow clones that are both longer and shorter than M13

wt. The disadvantage of the phagemid method is that the helper phage M13KO7

(a virus with contour length 1.2 µm) is always present in the final suspension. The

volume fraction of the helper phage depends on the bacterial host and can vary

from 20% (E. Coli. JM 101) to 5% (E. Coli. XL-1 Blue). Typically, 0.5 - 1 gram

of purified virus can be obtained in one to two weeks of work. We found that it

is possible to separate the clones from the 1.2 µm long helper phage by adjusting

the concentration of the bi-disperse, purified virus suspension such that it is in I-N

coexistence. There is a strong fractionation effect at the I-N transition for bidisperse

rods, with large rods almost entirely dispersed in nematic phase as is predicted by

the theory [13, 40, 41, 42]. Therefore, by keeping only the portion of the suspension

in the isotropic phase we can obtain rods with higher monodispersity.

All of the viruses grown using the phagemid method are monodisperse enough
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to form stable smectic phases as is illustrated in Fig. 3.1. We note that the measured

spacing of the smectic phase (λ) is almost identical to the contour length (L) for

all the mutants studied. The qualitative trend that flexibility decreases the smectic

layering has been predicted theoretically and observed experimentally [10, 43, 44,

45]. Unfortunately, the theories are not accurate enough to be able to quantitatively

predict dependence of smectic spacing on the flexibility of the rod. We expect that

the persistence length (P ∼ 2.2µm) of all our clones is the same, because all clones

have the same structure and only vary in length. Since the contour length varies,

so too does the ratio of contour to persistence length L/P . Thus we expected

that the shorter rods (L = 0.4µm) would be relatively stiffer than the longer ones

(L = 1.4µm) and consequently predicted that the layer spacing would increase for

shorter rods. This was not the case as we observed that for all lengths the ratio

λ/L ∼ 1.

We also discovered that fd wt (Fig 1c) consistently forms a smectic phase at

a lower concentration then M13 constructs [29]. This is perhaps explained by the

difference in surface charge between M13 and fd and the breakdown of the concept

of effective diameter at high concentrations. The fd wt is more charged than M13

and therefore the highly concentrated aligned rods in nematic phase repel each

other more strongly, which results in a higher effective concentration and thus the

nematic-smectic phase transition occurs at a lower number density of rods. Note

that at low concentrations changing the surface charge by 30% has negligible effect

on the effective diameter and the phase behavior of the isotropic - nematic transition

(Fig. 1 in [27]).

With the availability of rods with different contour length we are able to

experimentally explore a number of important issues pertaining to the phase be-

havior of hard rods. For pure rods we can address the question of how flexible can

a particle be and still form a smectic phase. Another important question is the

relative stability of the columnar and smectic phase as a function of rod bidisper-
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sity or polydispersity [46, 47, 48, 49, 50]. For mixtures whose lengths are different

enough there is also a prediction of microseparated smectic phase [51]. So far there

are no experimental studies on these subjects, but with our system we can prepare

artificially polydisperse and bidisperse suspensions to explore these issues.

3.3 fd virus with covalently attached polymer

Besides preparing viruses with varying contour length we are also able to alter the

effective diameter of the virus by coating it with polymer. The amino terminal group

of each coat protein of fd and M13 virus is exposed to the solution. Through this

chemical site we are able to covalently attach water soluble polymer Poly(ethylene

glycol) (PEG) to the surface of the virus. End functionalized PEG molecules that

readily attach to amino groups were obtained from Shearwater polymers. The chem-

ical reaction was carried out in 100 mM phophate buffer at pH 7.5 for 30 minutes

and the virus concentration was kept at 1 mg/ml. For SSA-PEG-5000 the weight

concentration of PEG was kept the same as the weight concentration of the virus

in the reaction vessel while for SPA-PEG-20000 the concentration was four-fold the

virus concentration. The reaction product (fd-PEG) was separated from unreacted

PEG polymer by repeated centrifugation at 200,000 g. The pellet contained the

nematic phase of the fd-PEG complex. We diluted a few samples to the concen-

tration of the isotropic-nematic phase co-existence, and after an exceedingly long

time (up to few months), we observed macroscopic phase separation. The measured

width of the co-existing concentrations did not differ from the measured width in

fd wt, which is about 10% [27]. This is an indication that the absorbed polymer

does not significantly alter the flexibility of the rod-like particles. We infer this from

the well established fact that the width of the I-N coexistence is very sensitive to

the flexibility of the rod [25]. If we had observed widening of the I-N coexistence

it would have been an indication that polymer effectively increases rigidity of the
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rod. Because of the extremely long time required for complete phase separation, in

order to obtain the points in Figure 2 we diluted the nematic phase until there was

no more birefringence observed. We presume that this concentration is equal to the

concentration of rods in isotropic phase coexisting with the nematic phase.

To interpret the data in Figure 2 we need the concept of the effective diameter

(Deff) introduced in previous chapter. Basically it is possible to incorporate the effect

of long range repulsion due to surface charge by exchanging the bare diameter with

an effective diameter Deff, which can be rigorously calculated and is roughly equal to

the distance between two rods where the intermolecular potential is equal to thermal

energy of 1 kbT. At high ionic strength Deff approaches the bare diameter, while at

low ionic strength Deff is much larger then the bare diameter, and is typically several

Debye screening lengths. The condition for the instability of the isotropic phase for

charged rods becomes c πL2Deff/4 = 4. It follows that the bare rod number density

at the I-N phase transition is inversely proportional to Deff. This is experimentally

observed for fd wt over a wide range of ionic strengths as shown with square symbols

in Fig. 3.2. The full line, which contains no adjustable parameters, is the numerical

solution of the I-N transition for semiflexible rods where Deff is calculated by an

extension of the Onsager theory (Chen 1993).

Water at room temperature is a good solvent for PEG polymers, which

approximate Gaussian coils. Thus PEG coated surfaces interact with each other

through long range repulsion [52, 53]. Therefore in our fd-PEG system, in addition

to the already present electrostatic repulsion between the charged virus surfaces,

we introduce repulsion due to the attached PEG molecules. We expect that for

polymers with large molecular weight and/or at high ionic strength the dominant

interparticle interaction, and consequently Deff is completely determined by the poly-

mer diameter because the ionic double layer is confined deep within the attached

polymer. The opposite is true at low ionic strength and/or low molecular weight

polymer. This is exactly the behavior that is shown in Figure 2. For fd grafted
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Figure 3.2: Concentration of the virus rods in coexisting isotropic and nematic
phases as a function of ionic strength and thickness of the PEG layer covalently
attached to the virus. Square points indicate the I-N transition in fd wt and were
taken from previous work citeTang95. The relationship between the I-N co-existence
concentration (c) and electrostatic effective diameter is c[mg/ml] = 222/Deff[nm]
and is drawn as a solid line. Circles indicate the I-N transition in fd coated with
PEG-5,000, while triangles refer to the fd virus coated with PEG-20,000. When
calculating the concentration of fd-PEG we only take into account the fd core since
the polymer density is not known. The dashed lines are a guide for the eye. At
low ionic strength, electrostatic repulsion determines Deff, while the grafted polymer
sets Deff at high ionic strength, as indicated in the cartoon of a cross-section of the
PEG-virus complex.
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with 20 k M.W. PEG (fd-PEG-20,000) we observe that for ionic strengths greater

than 2 mM the I - N transition is independent of ionic strength. This implies that

Deff for the fd-PEO-20,000 system is determined entirely by polymer repulsion. The

effective diameter of the particle can be extracted from the I-N co-existence con-

centrations since we have shown that there is a relationship between the effective

diameter and concentration of virus: c [mg/ml] = 222/Deff [nm]. For fd-PEG-5,000

the I - N transition changes from being dominated by polymer stabilization at high

ionic strength to electrostatic stabilization below 20 mM ionic strength. Because

this transition from polymer dominated to electrostatic dominated repulsion oc-

curs at a higher ionic strength for fd-PEG-5,000 compared to fd-PEO-20,000, the

effective diameter of fd-PEG-5,000 is smaller than that for fd-PEO-20,000. The for-

mula relating the molecular weight (Mw) of PEG to it’s radius of gyration (Rg) is

Rg = 0.215M 0.583
w Å [52]. From Figure 2 we can calculate that fd-PEG-20000 system

has Deff = 45 nm, which is approximately equal to Dbare + 4Rg = 35 nm. fd-PEG-

5000 complex has Deff = 17 nm at high ionic strength, while Dbare + 4Rg = 19 nm.

This suggests the model of the polymer being a sphere of radius Rg attached to the

surface of the virus, although we expect that the polymer is deformed by the virus

to some extent. In principle, if the exact shape of the repulsive interaction between

two polymer covered cylindrical surfaces is known, and if the number of attached

polymers per virus is measured, it would be possible to theoretically calculate the

phase diagram for rods with attached polymers and compare it to experimental

findings. However, we have not yet developed a method to accurately measure the

polymer surface coverage.

We can use our system of rods with different diameters to study some basic

problems in the physics of colloidal liquid crystals. To prepare a binary mixture

of rods with different diameters we simply mix fd wt and fd-PEO. The ratio of the

diameters is equal to the ratio of the concentrations at which these two systems

undergo the I-N transition. An additional advantage of this system is that this
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ratio can be altered in continuous way by simply adjusting ionic strength. From

Fig. 3.2 it is possible to deduce that at 200 mM ionic strength the fd-PEO complex

has effective diameter about 5 times thicker then fd wt. We have observed both

isotropic-isotropic and nematic-nematic demixing in binary mixtures of fd-PEG-

20000 and fd wt. Comparison to available theories is currently underway [54, 55].

In summary, a combination of genetic engineering and post-expression chemistry

has resulted in the production of gram quantitites of monodisperse rods varying in

length from 0.4 − 1.4µm and diameter 10 - 50 nm.
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Chapter 4

Cholesteric phase in bacteriophage

fd

4.1 Introduction

The system with the simplest intermolecular interaction known to exhibit all the

essential features of the nematic state is that of a hard rod suspension [2, 35].

Because of its inherent simplicity, much effort has been put into understanding

the relationship between the microscopic parameters of hard rods and the resulting

liquid crystalline behavior at the macroscopic level. In nature it often happens that

a symmetry of the nematic phase can be reduced to form a cholesteric phase, where

the nematic director follows a helical path in space. Formation of such a phase at the

macroscopic level is usually associated with chirality of molecules at the molecular

level. Details of how a simple change of a few atomic positions, required to make

a molecule chiral, causes a drastic change in self organization at the macroscopic

level remains unknown. However, in the continuum limit, where details of the

microscopic interactions are ignored, formation of the cholesteric phase is understood

as a competition between two elastic energies. On one hand, the free energy of a

chiral nematic is lowered in a twisted state because of the torque a chiral molecule
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exerts on it’s neighbor. Such a contribution to the free energy is characterized by

the “twist” constant Kt. On the other hand, creation of an elastically distorted

state characterized by the usual twist elastic constant K22 raises the free energy

[56]. It follows that the wavelength of the cholesteric pitch is proportional to the

ratio of Kt/K22. At present, the challenge lies in calculating the value of the “twist”

constant Kt for a given molecule with known microscopic interactions.

Inspired by work of Onsager, Straley made the first attempt to explain the

microscopic origin of the cholesteric phase [57, 58]. He considered rods with threads

of definite handiness, and for the first time obtained an expression for Kt as a

function of the microscopic parameters of a threaded rod. As in the case of Onsager’s

hard rods, Straley’s cholesteric phase is purely entropy driven. The non-zero value of

the chiral “twist” constant Kt is associated with the free volume gained as threaded

rods approach each other at a well defined angle. This work was later extended to

account for flexibility of rods [59, 60].

It is not clear if there are lyotropic liquid crystals where the cholesteric phase

is purely entropy driven and therefore most of the predictions of the Straley model

remain untested. An alternative proposal for the origin of a non-zero Kt constant

involves chiral attractions of van der Waals origin [61]. It is likely that for almost

all experimental systems both entropic temperature-independent interactions and

attractive temperature-dependent interactions contribute to the cholesteric twist,

further complicating the problem. Harris and coworkers noticed that if the threaded

rod is allowed to rotate freely around it’s long axis, chirality will be effectively

averaged away and proposed that short-ranged bi-axial correlations are critical for

formation of a cholesteric phase [62, 63]. The implication of their work is that all

mean-field theories, like the one of Straley, do not capture the essence of cholesteric

phase since they ignore all correlations.

Bacteriophage fd is a chiral, monodisperse rod-like colloid that forms a cholesteric

phase with a characteristic “fingerprint” texture shown in Fig. 4.1a [64]. fd has a
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a) p
a

P0

b)

Figure 4.1: (a) Typical texture of a cholesteric phase of a liquid crystalline sample
of fd observed with polarization microscopy. Dark lines correspond to regions where
the rods are perpendicular to the plane of the paper and bright lines correspond
to regions where rods are in the plane of paper. The length of the cholesteric
pitch (P0) spans two bright and two dark lines as indicated in the micrograph.
The concentration of the fd virus is 48 mg/ml and the ionic strength is 8 mM. The
positions of the polarizer (p) and analyzer (a) are indicated in the upper right corner.
(b) Texture observed with a polarization microscope for a nematic phase formed by
filamentous virus Pf1. A lower limit of the pitch of Pf1 is the capillary diameter of
0.3 mm. Although at the molecular level the two viruses have remarkable similarity
there is no evidence of a cholesteric phase in Pf1 as indicated by lack of a fingerprint
texture. The sample concentration is 38 mg/ml and the ionic strength is 8 mM.
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contour length of 880 nm [65], persistance length of 2200 nm [66] and a linear charge

density of 2e−/Å at pH 8.1 [15]. However, Pf1 a chiral virus with a structure ex-

tremely similar to fd [67, 68] does not show any evidence of forming a cholesteric

liquid crystal as shown by the absence of a “fingerprint” texture in Fig. 4.1b . This

sets the lower limit of the cholesteric pitch of Pf1 virus to the size of the capillary.

The theoretical challenge is to explain why two such similar chiral molecules have

extremely different values of the cholesteric pitch.

The concentrations of the co-existing isotropic and cholesteric phases are

quantitatively explained by the Onsager theory establishing fd as an ideal model of

hard rods [27, 32]. On the other hand, the origin and mechanism of the formation of

the cholesteric structure in liquid crystalline fd remains a challenge. It is important

to note that the Onsager theory predicts equally well the concentration dependence

of the isotropic-nematic and isotropic-cholesteric first order phase transition. The

reason for this being that the free energy difference between the isotropic and ne-

matic phase is much larger than the free energy difference between the nematic and

cholesteric phase. The average twist in the cholesteric phase between two neighbor-

ing molecules is generally less then 0.1◦. This is negligible when compared to the

magnitude of director fluctuations of rod-like molecules in the nematic phase, which

are typically around 10 degrees.

In this paper we study in detail the continuum properties of the cholesteric

phase formed by fd virus. We measure the dependence of equilibrium pitch on con-

centration and ionic strength and compare it to theory. For two ionic strengths we

also measure the value of the twist elastic constant (K22) as a function of concen-

tration. Initial studies of the cholesteric phase of fd can be found in the thesis of

Oldenbourg [69]
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4.2 Experimental Results

Bacteriophage fd was grown and purified using standard techniques of molecular

biology [39]. A stock solution at a volume fraction of 5% was dialyzed at room

temperature against Tris-HCl buffer at pH 8.1 of the desired ionic strength and 3 mM

sodium azide (NaN3) was added to prevent any bacterial growth. This solution was

spun in an ultracentrifuge which resulted in very viscous irridescent pellet indicating

a smectic or crystalline order. The pellet was resuspended at 4◦C overnight in the

amount of buffer so that its final concentration was just above the cholesteric-smectic

transition [10]. A dilution series was made from the smectic to isotropic phase.

The concentration was measured using the extinction coefficient OD1cm
269nm = 3.84

[32]. Quartz x-ray capillaries of 0.7 mm diameter were cleaned with sulfuric acid

and repeatedly rinsed with de-ionized water before being filled with fd samples.

After 24-48 hours the sample would equilibrate and a typical cholesteric texture

was observed. As described previously a fd suspension exhibits an increase in the

isotropic-cholesteric concentration over a period of few weeks [70]. The origin of

this time dependence is not known (although we suspect bacterial growth). We

also observed that the cholesteric pitch systematically increases over the same time

period. Typically the values of the co-existence concentrations shift by 1% per week

for first few months after the sample is prepared [71]. Because of this effect we

performed measurements on samples that were at most a few days old.

When viewed under a polarizing microscope the cholesteric phase displays

typical dark and bright stripes indicating that molecules are perpendicular and par-

allel to the plane of polarizers, respectively as is shown in Fig. 4.1. The distance

between two bright lines is equivalent to half the value of the pitch P0. The micro-

scope objective was focused on the mid-plane of the cylindrical capillary and the

picture was displayed on a video monitor where the cholesteric pitch was measured

using a ruler. Measurements of pitch are very sensitive to defect and boundary

conditions and can vary by as much as 20% within the same sample. However,
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Figure 4.2: Log-Log plot of the cholesteric pitch (P0) versus concentration (c) of
the fd virus. The ionic strength was 53 mM. A fit to P0 ∝ cν reveals the scaling
exponent to be −1.65 ± 0.05. The data spans the entire range of concentrations
of the cholesteric phase for this ionic strength and temperature. The sample is
isotropic below 30 mg/ml and smectic above 150 mg/ml.

by repeating the measurement 15-25 times along the full length of the sample it is

possible to get a reproducible value of the cholesteric pitch.

As the concentration of fd is increased we observe a first order isotropic to

cholesteric transition [27]; which is followed by a first order cholesteric to smectic

phase [10]. We measured the pitch of the cholesteric phase for concentrations ranging

from the isotropic to the smectic phase. The typical behavior of cholesteric pitch

as a function of concentration is shown in Fig. 4.2. We observe that the pitch

decreases with increasing concentration until it saturates at a certain value. As the

concentration of the virus increases further and approaches the smectic transition

we observe a slight unwinding of the pitch. This unwinding of the cholesteric pitch

close to the smectic transition has been observed before in thermotropic cholesteric

liquid crystals [72]. It is generally assumed that it is due to pre-smectic fluctuations

in the cholesteric. Curiously, when we looked for these pre-smectic fluctuations

with light scattering we did not observe any [10], even thought other virus liquid
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Figure 4.3: Log-Log plots of the cholesteric pitch dependence (P0) versus fd concen-
tration (c) for six different ionic strengths ranging from 68 mM to 4 mM. In each
plot data was fitted to an equation of form P0 ∝ cν . At the highest ionic strength
the exponent ν equals -1.65±0.04 and systematically decreases with decreasing ionic
strength until it reaches the value of -1.09±0.08 for the lowest ionic strength of 4mM.
Each data set spans the entire cholesteric phase from the isotropic boundary at low
concentrations to the smectic phase at high concentrations.

crystals (TMV) do show strong pre-smectic fluctuations [73]). At the cholesteric-

smectic phase boundary the cholesteric pitch abruptly unwinds. We repeated the

measurements for a range of ionic strengths from 4 mM to 63 mM as shown in Fig.

4.3.

By measuring the critical magnetic field necessary to induce the cholesteric

to nematic phase transition it is possible to deduce the value of the twist elastic

constant [56, 74, 75]. The following formula (in c.g.s. units) relates the critical field

to the value of the twist elastic constant K22

Hc =
π

2

(

K22

χv

) 1
2

q0 = π2

(

K22

χv

) 1
2 1

P0

(4.1)

The value of the diamagnetic anisotropy χ0 = χ‖ − χ⊥ per molecule for fd is

7 × 10−25 erg/G2 in c.g.s. units [76]. To convert χ0 to the diamagnetic anisotropy

per unit volume χv used in Eq. 4.1 it is necessary to multiply χ0 with the number of
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fd molecules per 1 cm3 (n) given by n = cNA/Mw where c is the mass concentration

of fd, Mw = 1.64×107 g/M [32] is the molecular weight of fd, and NA is Avogrado’s

number. We note that the reported value of χ0 used in this paper [76], is an

overestimate (by at most a factor of two) of the actual value [77].

We placed the sample with the long axis of the cylindrical capillary parallel

to the magnetic field and simultaneously observed the unwinding of the cholesteric

pitch under a microscope. Theoretically we expect that the equilibrium pitch will

scale as the fourth power of applied field. Utilizing this sharp dependence on mag-

netic field we measured the highest value of the field at which the characteristic

fingerprint cholesteric texture could still be observed and the lowest field at which

we observed no cholesteric texture. Using Eq. 4.1 we can calculate the range within

which we expect the true value of twist elastic constant. We have measured the value

of the twist elastic constant for various fd concentrations at two ionic strengths of

68 mM and 13 mM as is shown in Fig. 4.4.

The dependence of the cholesteric pitch on temperature is shown in Fig. 4.5.

For this part of the experiment phosphate buffer was used because of the smaller

temperature dependence of pKa. As the temperature is increased we observe rapid

unwinding of the cholesteric pitch. The measurements are reversible and upon

a sudden temperature quench the sample winds up within a few minutes as the

cholesteric pitch attains its equilibrium value.

4.3 Disscusion and Conclusion

Bacteriophage fd, as most other biological colloids, has a charged surface to maintain

its stability in solution. Onsager was first to show that in the dilute limit the free

energy of a charged rod is approximately equal to a free energy of a neutral rod

with an effective diameter larger than its bare diameter [2, 14]. It follows that the

volume fraction of the isotropic to nematic phase transition scales with Deff. The
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Figure 4.4: a) Concentration dependence of the twist elastic constant (K22) deter-
mined by measuring the critical magnetic field required for inducing the cholesteric
to nematic transition at two ionic strengths of 13 mM and 68 mM. Error bars indi-
cate a range between lowest magnetic field required to unwind the sample and the
highest magnetic field at which there is still evidence of the cholesteric phase. b)
Chiral “twist” constant (Kt) calculated from the relation derived from continuum
theory Kt = πK22/P0 for two ionic strengths of 13 mM to 68 mM. Note that the
sample concentrations at higher ionic strength of 68 mM do not span the entire
cholesteric range. The reason for this is that the accessible magnetic fields were not
strong enough to completely unwind samples with very high concentration.
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Figure 4.5: Dependence of fd cholesteric pitch on temperature. The rapid increase
in pitch at high temperatures is not due to denaturing of the virus since the sample
regains the original cholesteric structure upon cooling to room temperature. The
concentration of the fd sample was 32.5 mg/ml and the ionic strength was 8mM.
The sample was far from the cholesteric-smectic phase boundary and therefore the
pitch unwinding cannot be due to pre-smectic fluctuations.

dependence of Deff on ionic strength for fd was calculated previously [27] and the

concentration dependence of the co-existing isotropic-cholesteric phases as a function

of ionic strength were previously investigated [27].

Motivated by the predictions from various theories [58, 59, 60] we have tried

to fit our measurements of the pitch to an exponential form P0 ∝ c−ν as shown

in Fig. 4.3, for ionic strengths from 4 mM to 68 mM. At 68 mM ionic strength

we find that the scaling exponent ν has a value of 1.65 ± 0.05. Physically, at

high ionic strength the Debye screening length κ−1 becomes very small and the

effective diameter approaches the hard rod limit [27]. However, even for 68 mM ionic

strength, Deff (13nm) is still considerably larger then the bare diameter (6.6 nm). As

the ionic strength decreases to 4mM, Deff increases to about 30 nm. Experimentally,

we find that the exponent ν systematically decreases with decreasing ionic strength

until it reaches the value of 1.09±0.08 for low ionic strengths of 4mM.
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Other experimental investigations of lyotropic cholesteric liquid crystals in-

volved the neutral synthetic polymer poly-benzyl-L-glutamate (PBLG) [78, 79],

charged DNA [80] and charged cellulose suspensions [81]. In the case of PBLG,

the dependence of pitch on concentration scales with exponent ν = −1.8. In the

limit of high ionic strength we measure the value of the equivalent exponent for fd

to be -1.65. It might be expected that as ionic strength is further increased and

fd increasingly becomes hard rod-like the agreement between PBLG and fd data

would be even better. Experimental results for both fd and PBLG are close to the

theoretical prediction for the scaling constant ν due to Odijk and Pelcovits which

are -1.66 and -2.0 respectively [59, 60].

For DNA and closely related synthetic double-stranded RNA there are con-

flicting reports in the literature. Jizuka et. al. [82], in their study of double-stranded

RNA, reported the exponent to be -1.1. Senechal et. al. [83] on the other hand,

finds that the scaling exponent for an equivalent system to be -0.5. One possible

explanation for this discrepancy is the fact that the samples used had different ionic

strength. Senechal et. al. did their experiment in distilled water, while Jizuka’s

experiments were done at an ionic strength of 100mM. This agrees with our ob-

servations about the influence of ionic strength on the scaling exponent. For DNA

of contour length equal to the persistence length, Van Winkle reported that the

cholesteric pitch is independent of the concentration [80]. However, it is also re-

ported that DNA forms a pre-cholesteric phase with large cholesteric pitch and

undetermined structure. This is in contrast to the phase behavior of fd where there

is no sign of any transition between two cholesteric phases of different pitches.

Using a magnetic field induced cholesteric to nematic phase transition we

have measured the concentration dependance of the elastic constant K22. Although

the data is noisy, the value of K22 is almost constant in samples of low concentration.

Once the concentration of the virus is close to the smectic phase concentration, the

value of K22 rapidly increases. It is interesting to note that samples at low ionic
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strength have a significantly greater plateau value of K22 than the high ionic strength

samples, in contradiction to the theory of elastic constants that takes into account

the charge of rod-like particles [84]. Dupre [78] measured the value of the twist elastic

constant in PBLG and found that there is little variation over the entire concen-

tration range, which agrees with the plateau we observe in fd samples. However, in

PBLG there is no sudden increase in K22 at high concentrations. Measuring values

of the twist elastic constant (K22) and the pitch for identical samples enabled us to

obtain values of the chiral twist constant Kt using the relation P0 = 2πK22/Kt [63]

as shown in Fig. 4.4.

Sato [85] and coworkers have found that the expression for the cholesteric

pitch splits into an entropic and enthalpic part. The entropic part, due to hard

core repulsive forces, is temperature independent while the enthalpic part, due to

attractive forces, scales inversly with temperature. They measured the temperature

dependence of the cholesteric pitch for a number of liquid crystalline polymers and

found that the pitch scales with inverse temperature. It is important to stress

that their analysis is thermodynamic and therefore disregards all complex details of

molecular interactions. Surprisingly, we find that the temperature dependence of the

cholesteric pitch of fd does not agree with this general thermodynamic formalism.

A possible source of this discrepancy lies in the assumption used by Sato et. al.

that changing temperature has no effect on the internal structure of the polymer.

While this is true for most synthetic polymers, it is well known not to be the case for

bioploymers. Viruses Pf1 and M13 undergo structural symmetry transitions upon

decreasing temperature below 8◦C and changing surface charge, respectively [37].

There are also indications that the flexibility of fd depends non-monotonically on

temperature [71]. Any one of these factors could be the reason for the unusual

dependence of pitch on temperature.
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Chapter 5

Isotropic-nematic phase transition

in rods with attractive interactions

We present an experimental study of the isotropic-nematic phase transitions in a

suspension of rods, which besides hard core interactions has additional long range

attractive interactions and soft repulsive interactions. The attractive potential is

induced by adding polymers, which lead to the well known depletion interaction,

while the range of repulsive potential is regulated by the ionic strength of the sus-

pension. The phase diagrams are measured for a variety of intermolecular potentials.

The order parameter of the nematic phase co-existing with the isotropic is also mea-

sured for a range of polymer concentrations. The experimental results are compared

with the existing theoretical predictions for the isotropic-nematic (I-N) transition

in rods with attractive interactions and although the theory and experiments agree

qualitatively, significant quantitative differences are found.

5.1 Introduction

It has been known for a long time that the interaction betweens two molecules can be

separated into short range repulsive (steric) interactions and a long range attractive
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interactions. These intermolecular interactions lead to a picture of dense liquids for

which the reference system is that of hard spheres with an effective diameter while

the attractive interactions are treated as a pertubation to the hard sphere ground

state. Such a pertubation theory has it’s first origins in the van der Waals equation

of state. Due to this reason there has been a substantial effort over the past 50 years

to develop an understanding of the behavior of hard spheres.

Parallel to these developments, a statistical mechanical theory of hard anis-

totropic particles in the context of the isotropic-nematic phase transition was de-

veloped by Onsager in 1949. The Onsager theory is based on the realization that

while the virial expansion of free energy diverges for hard spheres with increasing

concentration, it converges for hard rods with sufficiently large aspect ratio at the

isotropic-nematic (I-N) phase transition. In fact, the theory with the second virial

approximation quantitatively describes the system with L/D > 100 at the I-N tran-

sition. The theory of hard rods was extended by Onsager and others to rods which

have a soft repulsion due to surface charge[2, 14].

While incorporating attractions into the system of hard spheres is relatively

easy, [86, 11] the analogous task for a system of hard rods is much more difficult.

The difficulty arises from the the fact that attractive rods are in the lowest energy

state when they are parallel to each other. These are exactly the configurations

that need to be avoided if the second virial term is to describe the system with

sufficient accuracy [87]. Therefore, unlike the system of hard spheres where it is

possible to introduce attractions by applying the pertubation scheme about the

hard sphere reference state it is not possible for an assembly of rods to be accu-

rately described by the second virial coefficient [88, 89]. For the pertubation theory

to work the free energy of the unperturbed liquid of rods needs to take into account

third and higher virial coefficients. Lekkerkerker et. al. have used computer simula-

tions and the scaled particle expression for free energy, which approximates higher

virial coefficients, to study the influence of attractive interactions on the I-N phase
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transition [90, 91].

If attractions are introduced to hard spheres the assembly will decrease it’s

energy by decreasing the average separation between spheres, which in turn increases

the density of the stable liquid phase. Unlike spheres, if attractions are introduced

into rod-like particles the system can lower it’s energy by either increasing it’s den-

sity, or increasing it’s alignment, or a combination of both responses. Therefore to

gain an understanding of the phase behavior it is important to measure both the

densities of the coexisting isotropic and nematic phases and the order parameter of

the nematic phase.

Experimentally an easy way to induce attraction is to add a non-adsorbing

polymer to the colloidal suspensions, which leads to the well known depletion inter-

action first described by Asakura and Ossawa [92]. The range and the strength of

the attraction can be controlled by the size of the polymer and the polymer concen-

tration respectively. One important difference between polymer induced depletion

attraction and attraction due the van der Waals origin is that in the polymer/colloid

mixture there is polymer partitioning between the two coexisting phases. Due to this

partitioning the strength of attraction between two colloids in a coexisting isotropic

phase is not the same as between two rods in the nematic phase.

It is important to mention that there have been previous experiments on the

I-N transitions in mixture of boehmite rods and polystyrene polymer [93]. However

interactions between the boehmite rods are not completely understood and the

full measurement of the phase diagram was not possible due to the formation of

a number of non-equilibrium states. In this paper we experimentally study the I-

N transitions in the presence of attractive interactions. As a reference hard-core

system we use the aqueous suspension of the rod-like fd virus particles. Previous

work has shown that the experimentally determined phase behavior of fd virus is

consistent with the theoretical predictions for hard rods [27, 32, 10, 34]. As the

strength of the attraction is increased we no longer observe the isotropic-nematic
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phase transition. Instead a number of novel metastable or stable structures are

observed which have been summarized elsewhere [94]. In this chapter we limit our

attention only to the range of polymer concentrations or equivalently strength of

attractions for which we obtain the isotropic-nematic phase transition. Throughout

this part of the phase space we find no evidence for non-equilibrium structures

reported in bhoemite/polystyrene mixtures [95].

The outline of this chapter is as follows. In section 5.2 we discuss the interac-

tion potential between two charged rods in an solution of non-absorbing polymers.

In the next section the theory that predicts the Isotropic-Nematic coexistence in the

presence of the non-adsorbing polymer is outlined. In section 5.4 we give the exper-

imental details and we compare the experimental results and theory in section 5.5.

Finally, we present the measurements of the order parameter of the co-existing ne-

matic phase in section 5.6

5.2 Intermolecular potential between two charged

rods immersed in polymer solutions

When a colloid is suspended in a polymer solution it creates around it a shell that

is excluded to the center of mass of any polymer. If two colloids approach each

other there is an overlap of the excluded volume shells which leads to an effec-

tive attractive potential also known as the depletion potential. In the depletion

picture the polymers are assumed to behave as spheres of radius Rs, which can

interpenetrate each other but interact via hard core repulsion with colloids. This

approximation introduced by Asakura and Ossawa (AO) [92], is valid as long as

the radius of the spherical colloid is much larger then the radius of the penetrable

sphere Rs [96, 97, 98]. On the other hand, if the radius of the colloid is equal to or

smaller then Rs, the colloid can penetrate the polymer. Consequently in this case

the range and the depth of the potential is significantly reduced when compared to
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the AO model. In our experiments the diameter of the polymer is up to 5 times the

diameter of the rod-like virus and therefore we expect that the depletion potential

significantly deviates from the Asakura-Ossawa penetrable sphere model.

Since not much is known about the depletion between rod-like particles we

calculate the depletion potential from a simulation. Two perpendicular cylinders are

set at a fixed distance apart and an attempt is made to insert a non-self-avoiding

the polymer molecule at random positions. If any segment of the polymer overlaps

with the colloid the insertion attempt fails and the polymer is not counted. The

profile of the depletion potential is then equal to

Udepletion(x) = kbT (N(∞) − N(x)) (5.1)

where N(x) is the number of polymers successfully inserted in the simulation box

when the rods are a distance x apart.

The depletion potentials obtained from the simulation are shown in Fig. 5.1.

From the exact results, it is known that the depletion potential at small separa-

tions between two parallel plates induced by penetrable spheres is equivalent to the

depletion potential induced by polymer (without excluded volume interactions), if

Rs in the AO model is equivalent to 2Rg/
√

π. Rg is the radius of gyration of the

polymer [99, 98]. If we use this fact, the simulation results for the depletion poten-

tial between two plates (indicated by open circles in Fig. 5.1) are in a very good

agreement with the potential predicted by the AO theory (indicated by the full line

in Fig. 5.1), as long as the separation between the plates is smaller then 3Rg/2. At

larger separations we observe that the potential exerted by the polymer has longer

range attraction then the equivalent penetrable sphere, as was previously noted [98].

This is because a polymer is only spherical on average and will adopt elongated con-

formations. On the other hand, the simulation results of the depletion potential

between two spheres immersed in a polymer suspension with Rg/Rcolloid = 3.36 is

significantly weaker and of much shorter range then what is predicted by the pene-
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Figure 5.1: Depletion potentials obtained from computer simulation of non-self-
avoiding polymer between two walls(open spheres), two perpendicular cylinders
(open squares) and two spheres (open triangles). The diameter of the sphere and
the cylinder is 66 Å while Rg of the polymer is 111 Å. The lines indicate the deple-
tion potential as predicted by the penetrable sphere (AO) model for the wall (full
line), cylinder (dashed line) and sphere (dotted line). The separation x is the closest
distance between two colloid surfaces. The concentration of the polymer is equal to
the overlap concentration, while the effective radius of the AO penetrable spheres
is 125 Å. The AO theory overestimates the potential between spheres and polymers
because polymer can deform around these obstacles.
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trable AO sphere model. The reason for this is that the small sphere has a higher

probability of penetrating a polymer with a large radius of gyration since polymers

have very open structures. The cylinders have the profile of an infinite plane in one

direction while in the other one they have the profile of a sphere. It follows that a

cylinder with the same diameter as a sphere has a lower probability to penetrate the

polymer coil. Therefore, as is shown in Fig. 5.1, the depletion interaction between

two perpendicular cylinders is stronger than between two spheres of equal diameter.

However, even for the case of cylinders, the potential obtained from the AO model

still significantly overestimates the strength of the potential obtained from the sim-

ulation as is shown in Fig. 5.1. In this paper we assume that the strength of the

depletion potential between two cylinders at an angle γ scales as 1/ sin γ which is

proportional to the overlap area. The shape of the depletion potential between par-

allel rods is found to be identical to the shape of the potential between perpendicular

rods, which supports this assumption.

The surface of the rod-like virus fd is highly charged and besides the attractive

depletion potential there is also the soft repulsive potential due to the double layer

repulsion, which has the following form:

Uel(x)

kT
=

Ae−κ(x−D)

sin γ
(5.2)

where κ−1 is the Debye screening length and γ is the angle between the two rods. The

details of calculating constant A can be found elsewhere [100]. The total interaction

potential between two perpendicular fd viruses at three different ionic strengths

relevant to the experiments are shown in Fig. 5.2. Since both the electrostatic

repulsion and the depletion attraction scale as 1/ sin γ the angle between the rods

only affects the magnitude of the potential and not the shape of the it.
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Figure 5.2: ]
The total interaction potential between two perpendicular fd viruses immersed in
a suspension of polymers with Rg = 111Å at three different ionic strengths. The
surface charge is assumed to be 1 e−/Å. By decreasing the ionic strength, both
the range and the depth of the interaction potential significantly decreases. The
concentration of the polymer is equal to the overlap concentration
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5.3 Theoretical description of the I-N phase tran-

sition in rod/polymer mixtures.

In this section we present the formalism that predicts the phase diagrams for a rod-

polymer mixture [90, 100, 101]. We found several misprints in the original paper

that are corrected here [90]. It is easily shown that the approximate free energy of

the colloid-polymer mixture is given by the following expression [102]:

FC+P (φ) = FC(φ) − Πp < Vfree(φ) > (5.3)

where FC(φ) is the free energy of colloid suspension at volume fraction φ. The

system is assumed to be in equilibrium with a polymer reservoir which is separated

from the colloid-polymer mixture by a membrane permeable to polymers only. The

osmotic pressure of the polymers in the reservoir is Πp. Vfree is the free volume

available to a polymer in a solution of pure hard particle colloids. It is assumed that

Vfree in a polymer/colloid mixture is equal to the Vfree in the pure colloid suspension.

In this sense Eq. 5.3 is a thermodynamic perturbation theory.

The expressions for free energy of a pure hard spherocylinder colloidal sus-

pension is given by the scaled particle theory developed by Cotter [22] :

F (δ, φ, α)

NkbT
= ln(φ) + ln(1 − φ) + σ(f(α), L/P ) + Π2(δ, α)

φ

1 − φ

+
1

2
Π3(δ, α)

(

φ

1 − φ

)2

(5.4)

where φ is the volume fraction of spherocylinders

φ =
Nrods

V

(

π

6
D3 +

π

4
D2L

)

. (5.5)

The coefficients Π2 and Π3 are given by the following expressions
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Π2(δ, α) = 3 +
3(δ − 1)2

(3δ − 1)
ξ(f(α)), (5.6)

Π3(δ, α) =
12δ(2δ − 1)

(3δ − 1)2
+

12δ(δ − 1)2

(3δ − 1)2
ξ(f(α)) (5.7)

and parameter δ is the overall length to diameter ratio of the spherocylinder given

by :

δ =
L + D

D
. (5.8)

The functions σ(f(α), L/P ) and ξ(f(α)) are the Onsager expressions for the ori-

entational and packing entropy given in Eqs. 2.6 and 2.10 as a function of the

orientational distribution function f(α), the contour length (L) and the persistence

length (P).

The co-existence concentrations for the I-N transition predicted by the scaled

particle theory are in very close agreement with the results from the computer

simulations [26]. This indicates that the scaled particles theory provides a good

approximation for third and higher virial coefficients. The expression for the free

volume is given by:

ν(φc, γ, q) = (1−φC)exp



−


A(γ, q)

(

φC

1 − φC

)

+ B(γ, q)

(

φC

1 − φC

)2

+ C

(

φC

1 − φC

)3








(5.9)

where

A(γ, q) =
6γ

3γ − 1
+

3(γ + 1)

3γ − 1
q2 +

2

3γ − 1
q3,

B(γ, q) =
1

2

(

6γ

3γ − 1

)2

q2 +

(

6

3γ − 1
+

6(γ − 1)2

(3γ − 1)2
ξ(α)

)

q3,

C(γ, q) =
24γ

3γ − 1

(

2γ − 1

(3γ − 1)2
+

(γ − 1)2

(3γ − 1)2
ξ(α)

)

q3. (5.10)
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The ratio of the polymer diameter to the rod diameter is given by the parameter q.

The expression for the pressure and the chemical potentials are :

Π = φ2 ∂Fc(φ)

∂φ
+ npλ

(

ν − φ
∂ν(φ)

∂φ

)

µ = Fc(φ) + φ
∂Fc(φ)

∂φ
+ npλ

∂ν(φ)

∂φ
(5.11)

where np is the polymer volume fraction and λ is the ration of spherocylinder volume

to polymer volume

λ =
1

q3

(

1 +
3

2
(γ − 1)

)

(5.12)

The phase diagram is calculated by first minimizing the free energy with the respect

to the parameter α and then solving coexistence equations 5.11.

The theory just outlined is valid for a mixture of hard rods and interpene-

trating AO spheres. To compare this theory to our experimental results on charged

rods we split the interaction potential into the hard core repulsive part with an

effective diameter and the long range attractive part as is shown in figure 5.3. We

expect that this approximation works reasonably well only at high ionic strengths

where the repulsive part of the interaction potential is very steep and can there-

fore be approximated by an effective hard diameter. As the effective diameter we

chose the value that is obtained from the second virial treatment of charged rods as

was discussed in chapter 2 and reference [27]. For the attractive part of the inter-

molecular potential we chose a penetrable sphere whose effective concentration and

size match the depth and range of the potential obtained through the simulation

described in section 5.2. This takes into account the fact that the depletion attrac-

tion is weakened due to interpenetration of the rods and polymers. As is shown in

fig. 5.3 the effective potential used for the calculation of the phase diagram closely

approximates the actual interaction potential between two charged rods obtained
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Figure 5.3: [
The effective potential, which is a sum of double layer repulsion at 100mM ionic
strength and depletion attraction between two perpendicular rods is shown by the
dashed line. The concentration of the polymer that gives this attraction is equal
to the overlap concentration c?. In the calculation this interaction potential is
approximated by a hard core repulsion with effective diameter 106Å and penetrable
spheres with effective diameter of 107 Å and effective concentration of 0.311 c?

indicated by the full line.
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by the combination of the theory and simulation

5.4 Experimental Methods

Bacteriophage fd was grown and purified as described before [32]. The purified virus

was extensively dialysed against 20 mM Tris-HCl buffer to which NaCl was added

to obtain solutions with total ionic strengths of 50mM, 100mM and 200mM. The

pH of the buffer was 8.2 and all the experiments where done at room temperature.

As the non-absorbing polymer we used a mixture of 95% Dextran (150,000 and

500,000 M. W. from sigma) and 5% FITC labeled Dextran with the same molecular

weight. The reason for using labeled Dextran is that we can easily determine the

concentration of the polymer by measuring it’s absorbance at 495 nm. It is also

important to note that Dextran carries no charge at pH=8.2 and is highly water

soluble. The relationship between the radius of gyration Rg and molecular weight

MW is Rg = 0.66MW 0.43 [103, 104]. The reason for the small exponent 0.43 is due

to the fact Dextran is not a linear, but a branched polymer.

The virus suspension was mixed with Dextran and the concentrations were

adjusted until the sample was in the two phase region. The time required for the

macroscopic phase separation varied from overnight to two weeks depending on the

width of the coexistence region. Once the phase separation process was complete a

small sample was taken from each of the coexisting phases and the concentrations

of both the virus and Dextran were obtained by absorption spectroscopy. At higher

polymer concentration the sample would no longer phase separate into uniformly

co-existing isotropic and nematic phases. Instead, we observed a whole range of

slowly evolving metastable phases. For these samples we were only able to measure

the concentration of the rods and polymers in the isotropic phase.

The order parameter of the nematic phase was measured by placing the sus-

pension into a quartz x-ray capillary with a diameter 0.7 mm (Charles Supper).
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Figure 5.4: The I-N phase diagram predicted by the theory outlined in section 5.3
for rigid and semi-flexible rods. The boundary between the two phase region and
the region where a single phase is stable is indicated by the thick dashed line for
semi-flexible rods and thick full lines for rigid rods. A few tie lines between the
coexisting phases are shown by thin dashed lines for illustratory purposes. For the
flexible particle the ratio of the contour length to persistence length is L/P = 0.4

Samples were aligned with a 2T magnetic field [105]. The sample were immersed

in a water bath and viewed under a polarizing microscope where the width of the

capillary was measured. The birefringence of the aligned nematic was measured

using a Berek compensator mounted on the Olympus polarizing microscope. The

order parameter is obtained using the relationship S = dρno where ρ is the concen-

tration of the sample d is the thickness of the capillary and n0 is the birefringence

per particle. The n0 is available from recent experiments where order parameter

was determined using X-ray scattering [30].
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5.5 Experimental phase diagrams of the isotropic-

nematic coexistence and comparison to the

theory.

Figure 5.4 shows the shape of the diagram predicted by the scaled particle theory of

Lekkerkerker and Stroobants [90]. The theory predicts that addition of the polymer

significantly widens the coexistence width and that at higher polymer concentra-

tions there is partitioning of the polymer between the isotropic and nematic phase.

The influence of the flexibility of the rod on the phase behavior of the rod/polymer

mixture is also shown. Even for hard rods without any polymer present the flexi-

bility of the rod is important in determining the location and the nature of the I-N

phase co-existence. As discussed in Chapter 2 and in references [25, 27] there are

three main effects of flexibility on the behavior of hard rods. Firstly, the flexibility

increases the concentration of the I-N co-existence. Secondly, it decreases the width

of the I-N coexistence, and thirdly it reduces the order parameter of the nematic

phase co-existing with the isotropic phase. In figure 5.4 the phase diagrams for the

two equivalent system of rods with attractions are shown with the only difference

being the flexibility of the rod. For the case of the rigid rods the concentration of the

polymer needed to induce widening of the concentrations of the coexisting phases is

much lower than for that of semi-flexible rods.

Figure 5.2 shows that with decreasing ionic strength both the range and the

depth of the attractive potential decreases. In order to be able to calculate the phase

diagrams from these interaction potentials they were approximated as effective hard

particles as demonstrated in figure 5.3. The resulting phase diagrams corresponding

to three different ionic strengths are shown in figure 5.5. As expected from the

knowledge of interaction potentials, the polymer concentration needed to induce

significant widening of the co-existence concentration increases with decreasing ionic

strength.
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Figure 5.5: The phase diagrams of rod/polymer mixture at three different ionic
strengths as predicted by the theory. The contour length over persistence length is
L/P = 0.4, which corresponds to the flexibility of the fd virus.

In figure 5.6a an experimental phase diagram is shown for the full range of

accessible polymer concentrations. As discussed in section 5.4 for some polymer

concentrations the concentration of the rods in the rod rich phase could not be

measured due to the fact that the phase would not macroscopically phase separate.

For these samples the process of phase separation was investigated using optical

microscopy and our findings are presented elsewhere [94]. From the phase diagram

in figure 5.6 we can conclude that the rod/polymer mixtures are highly immiscible

for most experimental parameters.

At very high polymer concentration the concentration difference between co-

existing isotropic and nematic phase starts decreasing as is shown in figure 5.6 . This

depletion re-stabilization was observed before in experimental studies of spherical

colloid/polymer mixtures in aqueous suspensions [106]. The presumed reason for

this is that at concentrations higher then the overlap concentration (c?) (the semi

dilute regime) the relevant length scale that determines the range of attraction is not

the radius of gyration but the correlation length. This correlation length decreases

with increasing polymer concentration. Therefore it is expected that at certain poly-
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mer concentration the range of attraction becomes smaller than the range of double

layer repulsion, which consequently results in the rods interacting through repulsive

forces only. In this regime the I-N co-existence concentrations of the rods will be

equal to the co-existence concentrations without any polymer present. However, we

do not take into account this phenomenon in our theoretical model and therefore

the validity of the theory is restricted to the polymer concentrations below c?. In

figure 5.6b we show the region of the phase diagram where the sample undergoes

the I-N transition.

The experimental phase diagrams for three different repulsive potentials

(ionic strength of 50 mM, 100 mM, 200 mM) are shown in figures 5.7, 5.8 and 5.9.

All these measurements where done with Dextran polymer of the same diameter

and therefore the range of attraction in this experiments does not change. Fig-

ure 5.7 shows that at the ionic strength of 50 mM the presence of the polymer

has no effect on the coexistence concentrations of the I-N transition. As the ionic

strength is increased to 100 mM the addition of the polymer increases the width

of the co-existence concentration. At very high polymer concentration we observe

restabilization of the I-N. This was also observed in mixtures of fd and Dextran (MW

500 000) at 100 mM in figure 5.6. Finally, at the highest ionic strength of 200 mM a

relatively low concentration of polymer is needed to induce a complete phase sepa-

ration between a polymer-rich rod-poor isotropic phase and a rod-rich polymer-poor

nematic phase. At this ionic strength no reentrant I-N phase behavior is observed

for all accessible polymer concentrations. We also note that in the mixtures of DEX

500 000 and fd at 200 mM we do not observe the reentrant I-N phase transition

(data not shown). The dependence of the phase behavior on the ionic strength has

the same qualitative behavior as predicted by theory in figure 5.5. However, when

the theory is quantitatively compared to the experiment there are large differences

between the predicted phase boundaries (full lines) and experimentally measured

phase boundaries shown (5.7 to 5.9).
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Figure 5.6: a) The complete phase diagram for the mixture of fd virus and Dextran
(MW500 000, Rg = 176Å) at 100mM ionic strength. The measured points are
indicated by open circles while the dashed line is a guide to the eye indicating the
two phase region. For some samples the tie-lines are indicated by thin full lines. b)
The part of the phase diagram where I-N co-existence is observed. The theoretical
prediction for the two-phase region is indicated by the thick full line in figure b.
The polymer overlap concentration corresponds to φpolymer = 1
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Figure 5.7: The phase diagram of the mixture of fd virus and Dextran polymer
(MW150 000, Rg = 111Å) at 50 mM ionic strength. The coexisting points are
indicated by open circles while the dashed line is the guide to the eye separation
two phase from one phase region. The theoretical prediction for the phase diagrams
is indicated by full black line. The I-N coexistence was measured up to polymer
concentration of 4c? *φpolymer = 4 without any changes in coexisting concentrations
(data not shown).
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Figure 5.8: The phase diagram of a mixture of fd virus and Dextran polymer
(MW 150 000, Rg = 111Å) at 100 mM ionic strength. The coexisting points are
indicated by open circles while the dashed line is the guide to a eye separating the
two phase from one phase region. The theoretical prediction for the phase diagrams
is indicated by the full black line.
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Figure 5.9: The phase diagram of the mixture of fd virus and Dextran polymer
(MW150 000, Rg = 111Å) at 200 mM ionic strength. The coexisting points are
indicated by open circles while the dashed line is the guide to the eye separation
two phase from one phase region. The theoretical prediction for the phase diagrams
is indicated by full black line.

In the original paper by Lekkerkerker and Stroobants, besides I-N transitions

there are also predictions for I-I transitions and N-N transitions for certain ranges

of parameters. However, for conditions relevant to our experiments the theory only

predicts I-N coexistence in agreement with experimental observations.

5.6 Order parameter of the rods with attraction

in the nematic phase

As mentioned in the introduction attractive rods can lower their energy by either

increasing their parallel alignment or decreasing their average separation. To check

if the presence of the polymer increased alignment of the rod-like virus we have

measured the order parameter of the nematic phase co-existing with the isotropic

phase as described in section 5.4. Figure 5.10 shows the prediction of the scaled

particle theory for the order parameter of the nematic phase coexisting with the

isotropic phase as a function of polymer concentration. When this order parameter
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Figure 5.10: Theoretically predicted order parameter of the nematic phase (S) co-
existing with the isotropic phase is indicated by the full lines for different polymer
concentrations. The dashed line indicates the theoretical prediction for the order
parameter of the nematic phase of hard rods without any attraction.

is compared with the order parameter of the nematic phase of hard rods at the

same rod concentration but which have no attraction it is obvious that introducing

attractions increases the nematic order parameter. Qualitatively the same trend

is also observed in experiments on fd/Dextran mixtures as is shown in figure 5.11.

However, when the experiments are quantitatively compared to the theory we again

find large differences, with the experimentally observed effect being much larger

then the theoretically predicted one.

5.7 Discussion and Conclusions

In this chapter we have presented experiments on the isotropic-nematic phase tran-

sition in a suspension of rod-like particles which have additional attractive interac-

tions. The widening of the coexistence concentrations and partitioning of the poly-
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Figure 5.11: The open circles indicate the order parameter (S) of the nematic phase
of the fd virus coexisting with the isotropic phase at different polymer concentration
or equivalently different strengths of attraction. The filled circles correspond to
the order parameter of the nematic phase of virus particles without any attraction
present. The ionic strength is 100 mM and the polymer used is Dextran (MW
500 000).
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mer predicted theoretically are also observed in the experiments on the fd-Dextran

mixture. Even after taking the following into account; the possibility of the virus

and polymer interpenetrating, the charge of the virus, and the semi-flexibility of

the virus we found large quantitative differences between the theory and the ex-

periment [107]. The difference is especially pronounced in the nematic phase. We

also demonstrate the importance of measuring the order parameter of the nematic

phase co-existing with the isotropic phase. At low polymer concentrations the coex-

isting I-N concentrations do not change appreciably, but the order parameter of the

nematic phase does. This indicates that coexistence concentrations for rods with

attractive interactions can agree with the Onsager theory of hard rods. Therefore in

experimental studies to discern the difference between the hard rods and rods with

attraction it is necessary to measure the nematic order parameter.
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Chapter 6

Kinetics of the isotropic-smectic

transition

6.1 Introduction

In the previous chapter we have discussed in detail the influence of the attractions

on the isotropic-nematic phase transition. One of the observation was that with

increasing the strength of the attractive potential the concentration of rods between

isotropic phase and nematic phase increases. Eventually the concentration of the

nematic increases to the point that the state with lowest energy is the smectic state.

In this chapter we use optical microscopy to follow the pathways through which a

smectic phase is formed.

6.2 Experimental observations

In our experimental studies of mixtures of fd wt and polymers we seek polymers

which do not interact with the virus. The two polymers we use for this purpose are

Poly(ethylene glycol) (PEG) and Dextran. To measure the I-N phase coexistence

we mix concentrated fd virus and Dextran (M. W. 148,000), dilute the sample with
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buffer until two phase co-existence is initiated, and let the sample phase separate

at room temperature, which takes about two weeks for the slowest phase separating

sample. The Rg of 148,000 Dextran is about 11 nm [104, 103]. In order to measure

the concentration of both rods and polymers in the coexisting isotropic and nematic

phases we use fluorescently labeled FITC-Dextran. After appropriate dilution the

concentrations of both polymer and fd are measured on the spectrophotometer.

The resulting phase diagram is shown in Fig. 5.6. At low polymer volume fraction

the coexisting I-N concentrations change little from the pure virus limit and there is

little polymer partitioning between the coexisting phases. At higher polymer volume

fractions the phase diagram “opens up” and we measure the coexistence between a

polymer-rich rod-poor isotropic phase and a polymer-poor rod-rich nematic phase.

The qualitative features in such a phase diagram are very similar to the theoretically

predicted phase diagram [90, 91]. In a forthcoming publication we will present

detailed experiments of the effects of ionic strength, polymer nature, and molecular

weight on the phase diagram.

When the phase diagram “opens up”, the concentration of rods in the ne-

matic phase coexisting with the isotropic phase dramatically increases. For the ionic

strength of 100 mM fd virus forms a stable smectic phase at 160 mg/ml [10] so it

is reasonable to expect a stable isotropic-smectic (I-S) phase coexistence to super-

sede the I-N transition for high enough polymer volume fraction, which is, indeed,

the case. Since the size of our virus allows us to visualize individual smectic layers

with an optical microscope we can observe the nucleation and growth of the smectic

phase out of an isotropic suspension in real time. Observation of typical structures

and their temporal evolution are summarized in the remainder of this paper. All

the following images were taken with a Nikon optical microscope using DIC optics

equipped with a 60x water immersion lens and condenser. Our previous work on

mixtures of rods and spheres focused on the nematic - smectic phase transition where

we employed fd as rods and for spheres utilized either polymers, such as dextran or
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PEG, or polystyrene latex with diameters ranging from 40-100 nm, in distinction

to the work here, which focuses on the isotropic - smectic transition using smaller

polymers of diameters 4-10 nm [108, 109]

A homogeneous sample of composition in the part of the two phase region

of Figure 5.6 where the tie-lines connect the isotropic and nematic phases begins

phase separation by forming nematic ellipsoidal tactoids as shown in Figure 6.1a.

The tactoids are nematic because they are too small to fit the cholesteric pitch.

Only when the sample has bulk phase separated does the nematic transform into

a cholesteric [34]. The nematic phase appears as a bright droplet elongated along

the nematic director with a dark background of isotropic rods. In the picture, the

rods are parallel to the plane of the paper and tend to align parallel to the I-N

boundary, as illustrated in Figure 6.1g. As the polymer concentration is increased

further (Figure ??, regions 4 - 7), the tie-lines connect the isotropic and smectic

phases. However, we still initially observe nematic droplets as shown in Fig. 6.1a,

but after a few minutes the droplets begin to change their morphology. Figures

4a to 4k were all taken from the same sample and show the time evolution of an

initially smooth tactoid during the first 20-30 minutes of phase separation. In Fig

4b we observe a thin helical sheet wrapped around the nematic tactoid. The width

of the sheet along the direction of the tactoid is about 1 µm. We assume that this

sheet is a single smectic layer of rods parallel to the direction of the nematic tactoid

that has nucleated on the nematic surface. This smectic layer continues to grow and

becomes thicker as shown in the side views of the tactoid in Figs 4c and 4d. Figure

4e shows the same helical structure, but this time viewed from above (the alignment

of the rods is perpendicular to the paper). We observe that the helical smectic layer

can close upon itself to form a single toroidal ring around the nematic tactoid. A

typical example of this structure is shown in Fig. 4f where the rods are pointing

out of the paper, and in Fig. 4g where rods are parallel to the paper. Two striped

tactoids with smectic rings can coalesce (Fig. 4h) to form droplets with a variable
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Figure 6.1: ]
Initial stages of the phase separation of an initially isotropic suspension fd at con-
centration of 22 mg/ml and Dextran (M. W. 150,000) that shows the formation of
striped tactoids upon addition of Dextran. The ionic strength is 110 mM. The con-
centration of polymer in picture (a) to (f) and (h) to (k) is constant and was added
to the pure virus suspension until it became slightly turbid. The concentration of
polymer increases in samples (m) to (o). In figure (g) we sketch the conformation
of rods in typical tactoid at I-N transition in rods without attraction. The sketch
of the nematic tactoid with the smectic ring is shown in figure l. The scale bar is 5
µm long and all images are taken at same magnification.
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number of smectic rings as is shown in Fig. 4i, 4j and 4k. Figure 4k to 4m are taken

at increasing volume fraction of polymers. From these three figures we observe that

with increasing polymer concentration the thickness of the smectic rings increases in

comparison to the size of the nematic core. The striped nematic droplets encircled

with smectic layers will proceed to coalesce until they sediment to the bottom of

the sample and reach a size that is many tens of microns. It should also be noted

that not all tactoids have closed ring structures, but some instead have a helical

structure that has a beginning and an end. This has important consequences for

the further progress of phase separation as is demonstrated in Fig. 6.2.

After the sample has been phase separating for few hours we observe a new

kind of structure shown in Fig. 6.2. These are filaments of fd that have a cross

section of 1 µm, which corresponds to a one particle length. The director is oriented

perpendicular to the fiber axis and precesses in a helical fashion as in a cholesteric.

This results in the helical structures observed in optical micrographs. The connec-

tion between the twisted sheets and the striped tactoids from Fig. 6.1 coexisting in

the same sample is clearly shown in Fig. 5c. The twisted strands grow slowly out of

the smectic rings and over a period of few days the strands are able to reach lengths

of several hundred microns. We should note that the twisted strand is a metastable

structure with a pronounced tendency to untwist over a period of days or as one

moves along the length of the strand away from its root at the striped I-N droplet.

For example Fig. 5b to 5g where all taken from the sample and show very different

degrees of twisting. Two strands can also connect with each other as is shown in

Fig. 5f. The twisted strands can quite often form a helical superstructure. Figure

5e is focused onto the bottom and Fig. 5g is focused on the top of such a structure.

Perhaps such a structure has it’s origin in a striped tactoid (Fig 5c) that has for

some reason lost its nematic core.

After a few months, as the sample further evolves towards equilibrium, we

observe a number of large sheets that are one rod length thick. We believe that
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Figure 6.2: The twisted strands in (b) to (g) are with the same conditions as in
Figure 4(a). Figure 5(a) is taken at a higher polymer volume fraction, while figure
5(i) is taken at lower virus concentration (5 mg/ml). The scale bar indicates 5 µm.

74



Figure 6.3: A three dimensional reconstruction of a large membrane of a single layer
smectic that is observed in a mixture fd wt and Dextran 150,000 M.W. after the
it has been equilibrating for 2 months. Using the microscope a sequential series of
images in the xy plane at different depths z (Fig 6a) were taken and the image was
reconstructed in three dimensions. Figure 6b shows the image of the membrane cut
along the y direction at the position indicated by arrow (b) in figure 6(a) and 6(c).
Equivalently, figure 6c shows the cut of the membrane perpendicular to the virus
axis as indicated by arrow (c) in figures 6(a) and 6(b). The scale bar indicates 5
µm.
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these are essentially large, single layer smectic membranes. Using the microscope

we photograph a sequential series of images in the plane of focus (xy plane, Fig. 6a)

evenly spaced at 0.2 µm intervals in the z dimension and from this information we

reconstruct the structure of the membrane in three dimensions. Fig. 6c shows the

image of the membrane perpendicular to the alignment of the rods from which we

deduce that the diameter of the membrane is about 10 µm. The cuts through the

xy and yz planes are uniformly one micron thick along the y direction.

In another series of experiments we studied a mixture of fd virus and PEG

polymer (M. W. 35,000, Rg = 9.6 nm) shown in Fig. 6.4. The concentration of rods

(10 mg/ml) was lower than in the Dextran/virus mixture described previously, but

the ionic strength was again 110 mM. We increased polymer concentration until we

observed slight turbidity in our sample indicating the onset of two-phase coexis-

tence. The structures we observed under these conditions with PEG/virus mixtures

are very similar to the structures observed in Dextran/virus mixtures illustrated in

the previous three figures. As we increased the polymer concentration further, we

observed a direct formation of the smectic membrane out of isotropic suspension,

instead of their growth from the striped nematic tactoid. An image of such a mem-

brane, where all the rods point out of the surface of the paper is shown in Fig. 7a.

The side view (not shown) indicates that the membrane is essentially one rod length

thick. The membranes are stable over a period of hours, which is surprisingly long.

If the sample is observed for long enough it is possible to observe the process of

coalescence of two smectic membranes. Fig. 7e shows such a process in a sequence

of frames spaced 1/30 seconds apart. In the first frame the rods in both membranes

are aligned in the same direction. Once the membranes are aligned, the process of

coalescence is complete in about 0.16 seconds.

As the concentration of the polymer is increased further another pathway to

the formation of the smectic phase is observed. We presume that this process initially

begins with the formation of the smectic membranes just as the one described in
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Figure 6.4: Phase behavior of mixture fd and PEG (M. W. 35,000). At the lowest
concentrations of polymer we observe striped tactoids that are very similar to the
ones shown in previous figures. As the concentration is increased, we observe forma-
tion of a single membrane one rod-length thick that is shown in figures 7a and 7b.
In figure 7e, five successive video frames spaced 1/30 of seconds apart show coales-
cence of two smectic membranes. At an even higher volume fraction of polymer, we
observe filaments shown in figures 7c and 7d that percolate throughout the entire
sample. The phase transitions on the surface are shown in figures 7f and 7g. The
scale bar indicates 5 µm.
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the previous paragraph. However, these membranes never reach the size of the

membranes at lower polymer concentration, which coalesce sideways as is shown in

Fig. 6.4e. Instead, while the membranes are quite small they stack on top of each

other to form long filaments shown in Fig. 6.4c. Within a few seconds after mixing

the sample these filaments form a percolating network, which is self supporting and

does not sediment over time. As is seen in Figs. 6.4c the thickness of the filament is

not uniform, but varies from one layer to the other. The irregular thickness of the

filaments does not change even if the sample is left to equilibrate for few days. From

this we can conclude that it takes rods a very long time to diffuse from one layer

to another. We also observe that as the concentration of the polymer is increased,

the thickness of the filament decreases. The formation of the filaments can be

understood in terms of depletion attraction. Once a single smectic layer grows to a

critical size a lower energy is achieved by stacking two equal diameter membranes

on top of each other rather than by letting two membranes coalesce laterally. This

is because the strength of the attraction between two surfaces is proportional to the

area of the interacting surfaces.

It is well known that depletion attraction between a colloid and a wall is

much stronger than the attraction between two colloids [110, 111]. Because of this,

in parallel to the bulk phase transitions described previously, there are competing

transitions with the surface of the container. Some of the structures we observe on

the surfaces due to the depletion attraction are shown in Fig 6.4f and 6.4g. Fig. 6.4f

shows a single smectic layer of rods. By focusing through the layer in z direction

we conclude that this layer is extremely thin (upper limit of 0.2 µm). Furthermore,

these layers can stack on top of each other as is shown in Fig. 6.4g.

Up to now, all the experiments were done with polymers of roughly the same

radius of gyration (Dextran 150,000 has Rg = 11 nm, PEG 35,000 has Rg = 9.6 nm)

and at same ionic strength (110 mM). When we decrease the radius of the polymer

(PEG 8,000 has Rg = 4.1 nm) we still observe two-dimensional membranes which are
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composed of parallel rods. However, as is shown in Fig. 6.5, the membranes assume

a hexagonal shape, which strongly implies that the rods within the membrane are

not a two dimensional fluid, but a two-dimensional crystal. Figures 6.5a to 6.5d

where taken at the lowest polymer concentration at which the crystallization was

observed. Under these conditions the induction time for critical nuclei formation as

indicated by the turbidity of the sample is about 30 minutes. A typical image of

a 2D crystal where the rods within the crystal are pointing out of the plane of the

paper is shown in Fig. 6.5a, while the side view where the alignment of the rods is

in the plane of the paper is shown in Fig 6.5b. The thermal fluctuations within the

crystal are easily visible under the microscope and the crystal is readily deformed as

is visible in the side view of the crystal. Often, instead of observing a flat membrane,

we observe a membrane with screw dislocation located at the nucleation center. The

images of such a membrane from the top view and side view are shown in Fig. 6.5c

and 6.5d. In Fig 6.5c we can clearly see that the two layers are on top of each other,

but if we focus through in the z direction we observe that these two layers belong

to the same 2d crystal. This is exactly what we would expect from a crystal that

has a screw dislocation.

If we increase the polymer concentration, the induction time decreases and

an image of these post-critical nuclei is shown in Fig. 6.5e. A typical crystal that

usually grows overnight out of this solution is shown in top view in Fig. 6.5f, while

Fig. 6.5g shows the side view of such a crystal. A nucleation center that significantly

protrudes out of the 2D crystalline membrane in clearly visible, and sometimes it

is even possible to observe two 2D crystal membranes connected through the same

nucleation center as shown in Fig 8h. The nucleation centers, which are long, thin

needles (Fig. 6.5e appear in the first few minutes after making a sample. It is

important to note that such a nucleation center is visible in every 2D crystalline

membrane and at all polymer concentrations. Two-dimensional crystals have been

observed in rod-like TMV/BSA mixtures [112] and these crystals also have a clearly
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Figure 6.5: Optical micrographs of two dimensional virus crystals observed in a
mixture of PEG (M.W. 8,000) and fd virus at a constant concentration of 15 mg/ml.
The first row of the pictures is at the lowest polymer concentration at which the
crystals where observed, the second row is at intermediate polymer concentration,
and third row is at highest polymer concentration. The scale bars are 5 µm and
images in each row are at the same magnification.
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visible single nucleation site protruding. The fact that the structures observed in

PEG/fd and TMV/BSA system are extremely similar suggest that the features of

2D crystalline membranes summarized here are generic to any system of rods with

short range attraction. Parenthetically we note the resemblance of the virus crystals

of Fig. 6.5 to “shish-kebabs”, which is the name given to lamellar crystals grown

around a central fiber that are observed in polymer crystallization from solution and

melt [113]. But whether or not the mechanisms governing shish-kebab and 2D virus

crystal formation are related is not clear.

At even higher polymer concentration, the induction time is unmeasureably

short and typical nuclei that are formed almost instantaneously are shown in Fig.

6.5j. The resulting crystals display almost no thermal fluctuations, are much smaller

than crystals formed at low polymer concentration, their number density is much

higher, and typically their edges are much sharper and better defined as is shown

in Fig. 6.5k and 6.5l.

The influence of both polymer concentration and polymer range has been

extensively studied for three dimensional spherical colloids [114, 115, 100]. The

basic parameter that determines the behavior of the system is the ratio of the range

of attraction between colloids as compared to the range of the effective hard core

repulsion. On the one hand, if the range of attraction is very short the vapor-liquid

phase transition will be metastable with regards to the vapor-crystal transition for

all conditions. On the other hand, if the range of attraction is sufficiently long ranged

under certain conditions the vapor-liquid transition will supersede the vapor-crystal

phase transition. Our results on the formation of two dimensional membranes in

the polymer/virus mixtures agree with this general rule. In the mixture of large

polymer (Dextran M. W. 150,000, Rg = 11 nm) and fd virus the attraction is long

ranged and we observe a two dimensional liquid like membrane. It contrast, in the

mixture of small polymer PEG 8,000, Rg = 4 nm) where the attraction is short

ranged, we observe a two dimensional crystalline membrane.
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6.3 Conclusions

We summarized the behavior of virus/polymer mixtures, which behave as hard rods

with an attractive potential. Although the interactions between rods in polymer

solutions is very simple, we observe a whole range of novel structures of surprising

complexity. These experiments and previous studies on rod/sphere mixtures [108]

indicate that there is much that remains to be understood about the phase behavior

of such mixtures.
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Chapter 7

Enhanced stability of the smectic

phase due to addition of hard

spheres

7.1 Introduction

In hard particle fluids all allowed configurations have the same energy and therefore

it is the number of states, or equivalently the entropy of a system that determines

the equilibrium phase. Examples of well known phase transitions where the for-

mation of ordered structures are driven solely by an increase in entropy are the

liquid to crystal transition in hard spheres [4], the isotropic to nematic [2] and the

nematic to smectic transition in hard-rods [5, 6]. Because of their high degree of

monodispersity, and because of the dominant role of steric repulsion in the pair-

potential, colloidal suspensions of polystyrene latex and rod-like viruses have often

been used as experimental model systems for the study of entropy induced ordering

in hard-sphere [116, 117, 118] and hard-rod systems, respectively [32, 31].

A natural extension of the above work is to the phase behavior of mixtures,

with a number of recent experimental and theoretical studies focusing on the phase
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behavior of binary mixtures of hard-spheres [119, 120, 121, 122, 92, 115, 123, 100,

124, 125]. We have recently begun work on less studied systems that closely approx-

imate hard-rod/hard-sphere and hard-rod/polymer mixtures [88, 91, 90, 126, 127,

128, 129]. As a model for hard-rods we used either fd or TMV virus, as hard-spheres

we used polystyrene latex, and as polymers we used poly(ethylene-oxide) with vary-

ing molecular weights [108, 112]. The part of the phase diagram explored consisted

of pure rods in either the isotropic, nematic, or smectic phase to which a small vol-

ume fraction of spheres or polymers was added. Remarkably, besides the expected

uniform mixtures and bulk demixing, we also observed a variety of microphases for

a wide range of sphere sizes and concentrations [108]. In microphase separation the

system starts separating into liquid-like regions that are rich in either spheres or

rods. However, unlike bulk demixing where rod and sphere rich regions grow until

reaching macroscopic dimensions, in microphase demixing these liquid-like regions

increase only to a critical size after which they order into well defined three dimen-

sional equilibrium structures. One of the micro-separated phases observed, named

the lamellar microphase, consists of alternating two-dimensional liquid-like layers of

rods and spheres and is the subject of theoretical analysis in this paper.

In this paper we use the second virial approximation first studied by Koda

et. al. [130] to examine the influence of molecular parameters such as shape and

size, on the phase behavior of rod/sphere mixtures. As the second-virial theory is

approximate in nature, we validate the theoretical predictions by comparing them

with either computer simulations or experimental results. The remainder of this

paper is organized as follows: In section 7.2 we formulate the second virial approxi-

mation for the rod/sphere mixture. The general features of the phase diagram are

discussed and a physical picture of the factors responsible for the enhanced stability

of the layered phase due to the presence of spheres is presented. In Section 7.3

the influence of varying the spherocylinder length on the phase behavior of sphero-

cylinder/sphere mixtures is studied using computer simulations and the results are
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compared to theoretical predictions. Section 7.4 examines how changes of the sphere

diameter influence the phase behavior of spherocylinder/sphere mixtures. Finally

in Section 7.5 we present our conclusions.

7.2 General features of a phase diagram of a spherocylinder-

sphere mixture

Although the equilibrium phases of all hard particle fluids are determined by max-

imizing the entropy, ordering transitions are still possible because the expression

for the total entropy, or equivalently free energy, splits into two parts. The ideal

contribution to the entropy is of the form ρ ln ρ, where ρ is the density distribution

function. This contribution to the entropy attains a maximum for a uniform density

distribution and therefore always suppresses transitions from uniform to modulated

phases. In contrast, excluded volume entropy sometimes increases with increasing

order and therefore drives the system towards a modulated phase. In this paper we

use a highly simplified second virial approximation to calculate the excluded volume

entropy.

The equilibrium phase in a spherocylinder/sphere mixture is determined by

four parameters: length over diameter of a spherocylinder (L/Dsc), diameter of

spherocylinder over diameter of sphere (Dsc/Dsp), total volume fraction of spheres

and spherocylinders (η) and partial volume fraction of spheres (ρsp). To help us in

interpretation of our results we first define the slope

τ = lim
ρsp→0

η(ρsp) − η(0)

ρsp

(7.1)

where η(ρsp) is the total volume fraction of the rod-sphere mixture at the layering

transition after the introduction of spheres at partial volume fraction ρsp. A positive

value of τ implies that adding a second component stabilizes the nematic phase
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by displacing the smectic transition to higher densities. For the case when both

components are spherocylinders of different lengths but with the same diameter,

slope τ is positive if the ratio of lengths is less then approximately 7 [51, 48]. In

the same manner, negative values of τ imply that the second component stabilizes

the smectic phase. There are predictions of a negative value of τ in a bidisperse

rod mixture when the ratio of rod lengths is large enough [51], or when added rods

have a larger diameter [131]. In this section we focus on the phase behavior of the

spherocyinder-sphere mixture for the specific microscopic parameters L/Dsc = 20

and Dsc/Dsp = 1. We present a physical picture of excluded volume effects that

are responsible for the enhanced stability of the lamellar phase. In the next two

sections we extend our study on how changes in the molecular parameters L/Dsc

and Dsc/Dsp modify the phase behavior and in particular, their influence on the

magnitude and sign of the slope τ .

7.2.1 Second virial approximation

The second virial approximation for a mixture of perfectly aligned spherocylinders

and spheres of equal diameter was proposed by Koda, Numajiri and Ikeda [130] and

is generalized for arbitrary L/Dsc and Dsc/Dsp in the appendix. It was previously

shown that the second virial approximation described qualitatively the formation

and various features of the smectic phase of hard rods [5, 132, 133, 44]. Here we study

how the addition of spheres perturbs the formation of the smectic phase. Since the

sphere volume fraction is very low we expect that the second virial approximation is

still qualitatively correct for these mixtures. We consider a sinusoidal perturbation

from the uniform density for both spherocylinders and spheres. From equations

(7.5) and (7.8) in the appendix we obtain the free energy difference between the

uniformly mixed and layered state in a spherocylinder/sphere mixture:

δF = a2
1

(

S11 − 2
a1

a2

S12 +
(

a1

a2

)2

S22

)

= 0 (7.2)
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Figure 7.1: Stability boundaries for a mixture of perfectly aligned spherocylinders
(L/Dsc = 20) and spheres with equal diameter (Dsc/Dsp = 1). The full line indi-
cates the theoretical prediction of the volume fraction at which the system becomes
unstable towards lamellar fluctuations. The dashed line indicates instability towards
demixing into two macroscopically distinct phases. Squares are results of computer
simulations at which the layering transition is observed. Theoretically, the period-
icity associated with a one-dimensional lamellar instability continuously grows and
diverges as the system completely phase separates. Illustrations of the miscible and
lamellar phases are shown in Fig. 5a and 5b, respectively.

.

The phase diagram obtained within this approximation for microscopic pa-

rameters L/Dsc = 20 and Dsc/Dsp = 1 is shown in Fig. 7.1. From the phase

diagram we see that the first prediction of the model is that spheres, upon addi-

tion to a smectic phase, will preferentially occupy space between smectic layers and

therefore create a stable micro-separated lamellar phase. The second prediction is

that the total volume fraction at which the system undergoes a transition from a

uniform miscible state to a layered lamellar state is lowered by increasing the par-

tial volume fraction of spheres. This implies that the slope τ is negative for this

particular spherocylinder/sphere mixture and we conclude that in this case spheres

enhance the layering transition.

We can assign a simple physical origin to every term given in Eq. (7.2)

above and Eq.(7.7) of the Appendix. The parts of the spherocylinder-spherocylinder

interaction term S22 and sphere-sphere term S11 that scale as η are due to the ideal
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(id) contribution to the free energy, also known as the entropy of mixing and are

denoted as Sid
22 and Sid

11, respectively. The terms having a η2 dependence in S22, S12,

S11 are due to the spherocylinder-spherocylinder, spherocylinder-sphere and sphere-

sphere excluded volume (ex) interaction, respectively and are denoted as Sex
22 , Sex

12

and Sex
11 . Since the instability is defined as δF (ηc, kc) = 0, at a critical density ηc and

at a critical wavevector kc all individual contributions to the free energy difference

in Eq. (7.2) must add up to zero. In Fig. 7.2 we show the value of all terms with

distinct physical origins at the instability density ηc and wavevector kc as a function

of partial volume fraction of spheres. Since from our analysis we cannot determine

the absolute amplitude of a1 we only plot the ratios of all free energy components

to the absolute value of the spherocylinder-spherocylinder excluded volume | Sex
22 |.

If we set the partial volume fraction of spheres to zero (ρsp = 0) in Eq.(7.2) we

obtain an equation whose solution indicates the nematic-smectic stability limit in a

pure suspension of aligned spherocylinders [132]. For these conditions the only two

nonzero components of free energy are Sex
22 , which is negative and therefore drives

the transition and Sid
22, which is positive and therefore suppresses the transition.

As we start increasing the partial sphere volume fraction ρsp, the spherocylinder-

sphere free volume term Sex
12 rapidly assumes large negative values as evidenced by

the rapidly decreasing ratio of Sex
12/ | Sid

22 |. This implies that layering the mixture

significantly decreases the excluded volume that is due to the spherocylinder-sphere

interaction.

We can use the information gained from the second virial approximation to

obtain a clear physical picture of excluded volume effects in spherocylinder/sphere

mixtures and explain the enhanced stability of the lamellar phase. Taking any single

spherocylinder in a uniform spherocylinder/sphere mixture and replacing it by two

spheres will leave the value of excluded volume virtually unchanged. The reason

for this lies in the fact that the volume excluded to the spherocylinder due to the

presence of a sphere with equal diameter, under the constraint of uniform packing,
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Figure 7.2: Term-by-term dependence of the free energy difference between the mis-
cible and lamellar phases (Eq. 7.2) as a function of the partial volume fraction of
spheres for L/Dsc = 20 and Dsc/Dsp = 1. The Sid

11 and Sid
22 terms are the sphere

and spherocylinder ideal contributions to the total free energy difference between
the layered and uniform states. Sex

11 , Sex
12 and Sex

22 are excluded volume contributions
to the free energy due to sphere-sphere, spherocylinder-sphere and spherocylinder-
spherocylinder interactions respectively. Since from our analysis we cannot de-
termine the amplitude in Eq. 7.2 we plot amplitude independent ratios of each
of five components of the free energy with different origins to the spherocylinder-
spherocylinder excluded volume interactions. The stability condition is that δF = 0,
so for any value of partial volume fraction of spheres ρsp the sum of the five contri-
butions to δF is zero. δF of the ideal terms are positive, hence they stabilize the
uniform, miscible nematic state, while the free volume terms are negative, favoring
the lamellar state. The excluded volume sphere-sphere term (Sex

11 )is negligible and
the spherocylinder-sphere (Sex

12 ) term dominates the transition.
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is a spherocylinder with diameter 2Dsc and length (L + 2Dsc) where L and Dsc are

defined in Fig. 7.3. However, the excluded volume between any two spherocylinders

with large L/Dsc is only about twice this value as illustrated in Fig. 7.3. Although

replacing spherocylinders by spheres in such a manner leaves the excluded volume

almost unchanged, it does significantly decrease the total volume fraction of the

mixture since the volume of two spheres is much smaller than the volume of a sphe-

rocylinder with large L/Dsc. Therefore in the spherocylinder/sphere mixture we

encounter excluded volume problems similar to those found in a pure spherocylin-

der solution, but at a lower total volume fraction. As in pure spherocylinders, the

system reduces the excluded volume by undergoing a transition to a layered phase.

The excluded volume is reduced in the lamellar state because a periodic density dis-

tribution forces spheres and spherocylinders into alternate layers thus decreasing the

probability of the very unfavorable sphere-spherocylinder contacts as illustrated in

Fig. 7.4. This explains the large decrease in the value of the Sex
12 term at the lamellar

transition that we observe in the second virial theory. This term is responsible for

the enhanced stability of the lamellar phase in a sphere/spherocylinder mixture. In

conclusion, it is the inability to efficiently pack a uniform mixture of spherocylinders

and spheres, as reflected in the large spherocylinder/sphere excluded volume term,

that destabilizes the nematic phase and enhances the formation of a layered phase.

An alternate way to think about the formation of a layered phase is to focus

on the effects of spherocylinder ends [134]. The nematic phase in our simplified

model is characterized by random distribution of spherocylinders along their axial

and radial direction as illustrated in Fig. 7.5. This end effect is responsible for the

formation of the smectic phase, which is characterized by a periodic density distri-

bution. In similar fashion, introducing a sphere into the nematic phase will have

the same effect on the surrounding spherocylinders as another spherocylinder end.

Therefore adding spheres very effectively increases the density of “spherocylinder

ends” and decreases the total volume fraction. To resolve the difficulties in efficient
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Dsp L
Dsc

Figure 7.3: ]
a) Volume excluded to the center of mass of a spherocylinder (sc) due to the presence
of a sphere (sp) is indicated by light shading b) Volume excluded to the center of
the mass of a second spherocylinder due to the presence of the first. Replacing
a spherocylinder by a sphere decreases the excluded volume by approximately a
factor of two, but it decreases the total volume fraction much more since the volume
of a spherocylinder with large L/Dsc is greater than the volume of a sphere with
diameter Dsc. The comparatively large excluded volume between a sphere and a
spherocylinder is the reason for the enhanced formation of the lamellar phase

packing due to these extra “spherocylinder ends”, the mixture layers at a lower total

volume fraction.

7.2.2 Monte Carlo Simulation

In the previous section we discussed two predictions of the second virial theory for a

spherocylinder/sphere mixture with L/Dsc = 20 and Dsp/Dsc = 1; the existence of

the lamellar phase and the enhanced stability of the lamellar phase when compared

to a smectic phase of pure spherocylinders. Our results are in agreement with

previous studies of Koda et. al. [130]. However, the second virial approximation is

highly approximate and there is reasonable concern about the influence of higher

terms on the topology of the phase diagram. To support their conclusions Koda

et. al. performed computer simulations, which indicated the existence of a lamellar

phase [136, 130]. Still, the question of whether spheres simply fill the voids between

layers in an already formed smectic phase, or actually induce layering at lower total

volume fraction was not addressed. In this section, using Monte Carlo simulations

we address the question of the influence of adding spheres on the phase behavior of
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a ) b ) c)

Figure 7.4: a) A schematic illustration of excluded volume effects in a nematic
phase in a spherocylinder/sphere mixture. In the nematic or miscible phase each
sphere creates a large excluded volume around it, indicated by gray areas, that is
inaccessible to spherocylinders. b) When the system undergoes a transition to a
layered phase, the large excluded sphere-spherocylinder volume vanishes since the
probability distribution severely limits the number of ways that spheres are allowed
to approach spherocylinders. (c) Illustration of the immiscible phase where the
system bulk phase separates into a rod-rich phase and a sphere-rich phase.
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a) b) c)

Figure 7.5: a) A schematic example of a typical configuration of spherocylinders in a
dense nematic phase. Since the nematic phase is characterized by a uniform density
distribution this results in inefficient packing and large excluded volume between
spherocylinders both along their radial and axial directions. This large and unfa-
vorable excluded volume is indicated by lightly shadowed areas. b) An illustration
of a typical configuration of spherocylinders in a columnar phase where the excluded
volume between spherocylinders is lower compared to the nematic phase at the same
density, and the ideal part of free energy is higher. In a columnar phase the sphero-
cylinders are forced into registry as one spherocylinder occupies space right above
or below another one. Therefore the columnar phase is characterized by two dimen-
sional order in the plane perpendicular to the spherocylinder’s long axis and one
dimensional disorder parallel to the long axis. c) A representative configuration of
spherocylinders in a smectic phase, which is characterized by one-dimensional order
along the spherocylinder’s long axis and two-dimensional disorder in the perpendic-
ular directions. Both theory and experiment indicate that the columnar phase is
always metastable with respect to the smectic phase [132, 135].
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spherocylinders by determining the slope τ in Eq. 7.1 in a mixture of spherocylinders

and spheres with parameters L/Dsc = 20 and Dsp/Dsc = 1

A Monte Carlo simulation of a mixture of hard-spheres and perfectly aligned

hard-spherocylinders was performed at constant pressure and number of parti-

cles [137]. Most simulations contained 392 spherocylinders and a variable number of

spheres. To check for finite size effects we also ran simulations with 784 spherocylin-

ders, but saw no significant difference in the results obtained. In one sweep, pressure

was increased from a dilute homogeneous mixture up to a well ordered, dense smec-

tic or lamellar phase. At each value of the pressure, the density of spheres and

spherocylinders and their corresponding smectic order parameter were measured af-

ter the system was allowed to equilibrate. Identical results were obtained when the

pressure was slowly decreased from a initially dense phase composed of alternating

layers of spherocylinders and spheres to a dilute homogeneous mixture.

Besides lamellar transitions there is a possible demixing transition where

spherocylinders and spheres phase separate into macroscopically distinct phases.

However, once a layered phase is formed the exchange of spheres between layers

drops to a negligible amount, leaving open the possibility that the system would

undergo a demixing transition, but is stuck in a lamellar phase, which is only a

metastable state. To find out the location of the demixing transition it is necessary

to measure the chemical potential of both spherocylinders and spheres in a sphe-

rocylinder/sphere mixture [138]. This possibility was not examined in this work,

primarily because we are only interested in how low concentrations of spheres per-

turb the formation of the layered phase. Therefore it is reasonable to expect that

at a very low volume fraction of spheres, the lamellar transition is going to be more

stable than the demixing transitions as predicted by the second virial theory.

A plot of the smectic order parameter for spherocylinders with L/Dsc = 20 as

a function of increasing total density for different partial volume fractions of spheres

is shown in Fig. 7.6. As the system approaches a certain critical density we observe
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Figure 7.6: Smectic order parameter obtained from Monte Carlo simulations is
plotted against the total volume fraction for spherocylinders with L/Dsc = 20.
From right to left, the partial volume fraction of spheres (ρsp) increases from 0% to
2.4% as indicated by the legend. The phase diagram is reconstructed from this data
by defining a phase as layered when the spherocylinder order parameter reaches a
value of 0.3.

a rapid non-linear increase in the smectic order parameter that we interpret as a

signature of the nematic to smectic phase transition. This critical density shifts to

lower values of the total volume fraction as the partial volume fraction of spheres is

increased. To reconstruct a phase diagram from the above data we define a phase

as layered when its smectic order parameter reaches a value of 0.3 [139]. For a pure

spherocylinder suspension this value yields good agreement with previous studies

of the volume fraction of the nematic-smectic phase transition [140]. Since we are

mostly interested in the qualitative behavior of a spherocylinder/sphere mixture this

method should suffice our purposes. Using this phenomenological rule, the phase

diagram for a mixture of spherocylinders and spheres (L/Dsc = 20, Dsc/Dsp = 1) is

reconstructed and compared to the second virial theory in Fig. 7.1. An immediate

conclusion drawn from Fig. 7.1 is that adding spheres to aligned spherocylinders

enhances the stability of the lamellar phase, which is indicated by the negative value

of slope τ , in agreement with the prediction of the second virial approximation.
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7.3 The effects of spherocylinder length on the

phase diagram

Next we proceed to investigate the influence of varying the spherocylinder length

on the magnitude of slope τ . The predictions of the second virial theory for the

nematic-lamellar instability are shown in Fig. 7.7a. The second virial theory

clearly predicts increasing stability of the lamellar phase with increasing length of

spherocylinder. To verify this prediction we repeated Monte Carlo simulations for

spherocylinders with different L/Dsc and used the same rule as before to identify

the volume fraction of the nematic-lamellar transition. The simulation results for

the location of the nematic to layered transition are shown in Fig. 7.7b. We can

conclude that our simulations confirm predictions of the second virial model and

that the length of the spherocylinder is an important parameter in forming the

lamellar phase, with longer spherocylinders showing an increasing tendency to form

a layered phase at a lower volume fraction of added spheres.

Using the physical picture of the excluded volume effects developed in the

previous section provides a natural explanation for our simulation results in Fig. 7.7.

With increasing spherocylinder length the excluded volume due to the spherocylinder-

sphere interaction grows proportionally to the spherocylinder length and conse-

quently the value of the Sex
12 term increases in magnitude. As we have seen before,

the larger the Sex
12 term, the more likely it is for the system to form a layered phase.

It is interesting to consider the limit of spherocylinders with infinite aspect

ratio. In the density regime of the nematic-smectic transition, this model can be

mapped onto a system with skewed cylinders with an aspect ratio close to one. The

nematic-smectic transition in this model has been studied numerically [91, 43]. If we

consider the addition of spheres to this system, then the same affine transformation

that maps the infinite spherocylinders onto squat, skewed spherocylinders, will map

the spheres onto infinitely thin, parallel disks. As the disks are infinitely thin,
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Figure 7.7: a) Prediction from the second virial theory for the total volume fraction
η of the lamellar instability as a function of sphere partial volume fraction (ρsp)
for spherocylinders with different L/Dsc ratios. The diameter of spherocylinders is
kept constant and is equal to the diameter of the spheres. b) Results from Monte
Carlo simulations for the lamellar instability of spherocylinders as a function of
partial volume fraction of spheres for same conditions as in Fig. 7.7a. The volume
fraction at the phase transition was defined as having a smectic order parameter of
spherocylinders equal to 0.3
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they do not interact with each other but only with the cylinders. Inside the nematic

phase, most volume is excluded for these disks. However, in the smectic phase, there

is ample space for the disks between the layers. In fact, the stronger the layering,

the larger the accessible volume. Hence in this limit, the addition of spheres will

strongly stabilize the smectic phase.

7.4 The effects of sphere diameter on the phase

diagram

In this section we investigate the influence of sphere diameter on the value of slope

τ . Fig. 7.8 shows the prediction of the second virial theory for the dependence

of slope τ on the ratio of spherocylinder to sphere diameter (Dsc/Dsp) for sphero-

cylinders with different L/Dsc. In first section we examine the phase behavior of

sphere/spherocylinder mixtures when the sphere diameter is smaller than sphero-

cylinder diameter and in the next section we examine the other case when the sphere

diameter is larger than the spherocylinder diameter. In our model the presence of

the spheres cannot alter the orientational distribution function of spherocylinders,

which are always perfectly parallel to each other. It is reasonable to expect that this

assumption holds for spheres smaller then the spherocylinder length, but as a sphere

becomes larger then the spherocylinder length, long wavelength elastic effects start

to dominate the behavior of the system and hard spherocylinders will tend to align

parallel to the surface of the sphere [141]. Therefore in Fig. 7.8 we plot the values

of slope τ only for those values of Dsc/Dsp for which our assumptions are at least

qualitatively correct. As we increase the sphere size beyond this limit our model

describes a highly artificial system of large spheres and parallel spherocylinders. In

this regime we observe oscillations in the value of slope τ similar to what is observed

in binary mixtures of parallel spherocylinders [51].
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Figure 7.8: Theoretical prediction for the stability criterium of the lamellar phase
τ in Eq. 7.1 as a function of spherocylinder (sc) to sphere (sp) diameter ratio for
four spherocylinders with different L/Dsc. The negative value of slope τ indicates
that spheres of that particular size enhance the layering transition. Larger negative
values of τ implies the formation of the lamellar phase at a lower total volume
fraction.

7.4.1 Sphere diameter smaller than spherocylinder diame-

ter

In the regime where Dsc/Dsp > 1 (for spherocylinders of any L/Dsc), decreasing

the sphere size increases the stability of the lamellar phase as indicated by the

increasing negative value of slope τ seen in the right hand side of Fig. 7.8. This

prediction of the theory has a simple explanation in our picture of excluded volume in

a sphere/spherocylinder mixture. If we halve the sphere radius Dsp, while keeping

constant the volume fraction of spheres, we increase the number of spheres eight

times. At the same time, the result of reducing the sphere size is to decrease the

excluded volume of the spherocylinder-sphere interaction. However, the eightfold

increase in the number of spherocylinder-sphere interactions more then compensates

for the decrease in excluded volume between the sphere and spherocylinder and

consequently the magnitude of Sex
12 increases with decreasing sphere diameter. This

leads to the increased stability of the layered phase with decreasing sphere size.
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It becomes difficult to verify this prediction using computer simulations. As

the sphere size decreases at constant total volume fraction η, the number of particles

in a simulation rapidly reaches the order of thousands requiring simulation times that

are prohibitively long. As the ratio of spherocylinder to sphere diameter (Dsc/Dsp)

was varied within the accessible range between 0.5 to 2 we did not observe any

changes in the value of slope τ that were larger than our measurement error. Larger

and longer simulations are needed for a careful analysis of spherocylinder/sphere

mixtures with extreme values of the ratio Dsc/Dsp.

7.4.2 Sphere diameter larger than spherocylinder diameter

For spherocylinders with small L/Dsc, Fig. 7.8 shows that the magnitude of slope

τ uniformly decreases with increasing sphere size. Eventually the slope τ changes

sign and becomes positive, implying that large spheres stabilize the nematic and not

the smectic phase. The phase diagram under conditions where slope τ is positive is

shown in Fig. 7.9. The wavevector associated with the layering transition, indicated

with a solid line in Fig. 7.9, remains at an almost constant value. Another important

point is that the amplitude ratio in Eq. (7.8) is positive. This means that the

periodic density modulations of the spherocylinders and spheres are in phase, which

implies that spheres no longer go into the gap between two spherocylinder layers, but

rather fit into the spherocylinder layer. However, as the partial volume fraction of

spheres (ρsp) is increased further we observe a discontinuous jump in the wavevector

to zero value. This implies that there is a discontinuous change from a layering to

a demixing transition. As the demixing transition is reached there is also a change

in sign of the amplitude ratio, which becomes negative and the spherocylinders and

spheres bulk separate. In contrast, the phase diagram for mixtures of small spheres

and spherocylinders shown in Fig. 7.1 looks quite different. The amplitude ratio

for this case is always negative implying formation of the lamellar phase. Another

contrast is that in a mixture of small spheres and spherocylinders the wavevector
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Figure 7.9: ]
Stability diagram of a mixture of spherocylinders (L/Dsc = 10) and large spheres
Dsc/Dsp = 0.15. Unlike a mixture of small spheres and spherocylinders (Fig. 7.1),
introducing large spheres displaces the layering transition to higher total volume
fractions indicating a positive value of slope τ . The structure of the layered phase
is also different, with large spheres fitting in the smectic layer rather than into the
smectic gap. The smectic periodicity associated with the layering transition does
not change significantly until the concentration of spheres is high enough for the
system to demix. Then the smectic wavevector discontinuously jumps to zero.

associated with the layering transition decreases in a continuous fashion until it

reaches zero value.

We now examine the behavior of individual terms in Eq. (7.2) for a mixture

of large spheres and short spherocylinders shown in Fig. 7.9. Most notably, we find

that at low volume fractions of spheres where the system undergoes the layering

transition, the ratio Sex
12/S

ex
22 << 1. This implies that upon layering there is al-

most no reduction of the unfavorable sphere/sperocylinder interaction and that the

spherocylinder/spherocylinder interaction alone drives the formation of the layered

phase. In contrast, for small spheres this ratio was large and was responsible for

enhanced stability of the lamellar phase as was shown in Fig. 7.2. At a higher

volume fraction of large spheres where the mixture directly bulk phase separates we

find that the ratio Sex
12/S

ex
22 >> 1. This implies, as expected, that demixing very ef-
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fectively reduces the unfavorable sphere/spherocylinder interactions. These results

suggest a physical picture of the excluded volume effect. Unlike small spheres, large

spheres can not fit into the gap between smectic layers and consequently there is no

way to gain free volume by undergoing the layering transition. As an alternative,

to gain free volume the system bulk phase separates at the lowest volume fraction

of spheres possible.

While for short spherocylinders the magnitude of slope τ uniformly decreases

with increasing sphere size, longer spherocylinders exhibit a qualitatively different

behavior. For a mixture of spherocylinders with L/Dsc = 100 and spheres with

Dsc/Dsp = 0.1 there is a pronounced increase in the stability of the lamellar phase

as shown in Fig. 7.8. By increasing the length of spherocylinders to even larger

values, the region of increased stability of the lamellar phase shifts to higher val-

ues of the sphere radius. Two conditions emerge, which when satisfied lead to

enhanced stability of the lamellar phase. First, it is necessary for a sphere to fit be-

tween two smectic layers without disturbing them. This condition is satisfied when

Dsp/L ≈ 0.1. The second condition is that Dsp/Dsc >> 1. It was argued before that

under these condition large spheres are able to induce smectic correlations amongst

neighboring spherocylinders [108], which in turn can enhance the formation of the

lamellar phase.

Because of the large size asymmetry it was not feasible to carry out simula-

tions for mixture of spherocylinders and spheres with L/Dsc ≈ 100 and Dsc/Dsp ≈
0.1. However, these conditions are closely approximated by recent experiments on

rod-like fd (L = 1µm, L/Dsc ≈ 100) and polystyrene spheres [108]. Therefore, we

compare theoretical results of slope τ for spherocylinders with L/Dsc = 100 shown

in Fig. 7.8 to these experimental results [108]. When large spheres Dsp ≈ 1µm,

(Dsc/Dsp ≈ 0.01) are mixed with fd at any concentration for which the nematic

phase is stable, we observe no formation of the layered phase. Instead, large spheres

phase separate into dense aggregates elongated along the nematic director indicat-
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ing that the value of slope τ is larger then zero. When the size of the sphere was

decreased to Dsp = 0.1µm, (Dsc/Dsp ≈ 10) we observed a transition to a layered

state at a fd concentration of 20 mg/ml. The formation of a smectic phase in a

pure fd suspension at the same ionic strength occurs at 65 mg/ml. The fact that

adding spheres diminishes the rod density by a factor of three indicates a large neg-

ative value of slope τ . As the sphere size was further decreased Dsp = 0.022µm,

(Dsc/Dsp = 0.46) there was again indication of a lamellar phase, but this time at a

much higher concentration of rods of about 50 mg/ml. Thus, although small spheres

still stabilize the layering transition, implying a negative value of slope τ , the mag-

nitude of slope τ is much less for Dsc/Dsp ≈ 0.46 than for Dsc/Dsp ≈ 0.1. These

qualitative trends of the non-monotonic behavior of slope τ with sphere size ob-

served in experiments of fd-polystyrene mixtures are very similar to the theoretical

prediction shown in Fig. 7.8 for spherocylinders with L/Dsc = 100.

7.5 Conclusions

In this paper we have presented the predictions of the second virial theory for a mix-

ture of parallel hard-spherocylinders and hard-spheres undergoing one dimensional

microphase separation. We have been able to verify a number of these predictions

using Monte Carlo simulations. We found that spheres induce layering, which im-

plies a negative value of the slope τ , which is the change in total volume fraction of

the mixture at the point of nematic-smectic instability with respect to the partial

volume fraction of added spheres (Eq. 7.1) . At the same time the magnitude of

the slope τ increases with increasing spherocylinder length. In other words, spheres

at the same partial volume fraction stabilize layering of longer spherocylinders more

than shorter spherocylinders. Besides this, the theory predicts an unusual non-

monotonic behavior in slope τ as a function of sphere to spherocylinder diameter.

Although the physical origin of this effect is not clear, it is intriguing that similar
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qualitative trends are observed in experiments of mixtures of the spherocylinder-like

fd and polystyrene spheres. However, in real experiments spherocylinders are free

to rotate, are flexible, and have charge associated with them. Before quantitative

comparisons with experiments are possible it will be necessary to perform simula-

tions and formulate theories that take into account these effects mostly ignored in

this highly idealized treatment.

7.6 Appendix

A general expression for the free energy of bidisperse mixture at the second virial

level is

βF (ρ1, ρ2) =
∑

i=1,2

∫

V
d(r)ρi(r) ln(ρi(r)) −

1

2

∑

i=1,2

∑

j=1,2

∫

V
dr1

∫

V
dr2ρi(r1)ρj(r2)fi,j(r1, r2) (7.3)

where the function fi,j is the overlap function between two spheres, sphere

and spherocylinder or two spherocylinders [130]. It attains the value of -1 if two

particles overlap, otherwise it is equal to 0. The terms involving ρ ln ρ represent the

entropy of mixing while the terms involving fi,j represent the free volume entropy.

Since we are interested in one dimensional layering we look at the response of the

system to following density pertubation

δρ1(z) = a1 cos(kzz)

δρ2(z) = a2 cos(kzz) (7.4)

The free energy difference between the uniform and perturbed state is
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δF = F (1 + δρ1(z), 1 + δρ2(z)) − F (1, 1) = ãSa (7.5)

where ã = (a1, a2) and S is a two dimensional stability matrix. To find the limit of

stability we have to solve the equation det(S) = 0. For latter convenience we define

the following function

S(
L

Dsc

, σ, k) =
3 sin(kσ(2 + 2 L

Dsc
))

4k3
−

2kσ cos(kσ(2 + 2 L
Dsc

)) − sin(k2σ L
Dsc

)

4k3
(7.6)

.

The above expression depends only on geometrical factors and is related to the

Fourier transform of the spherocylinder which is specified by the excluded volume

between a sphere of diameter Dsp and a spherocylinder of length L and diameter Dsc.

Wavevector k is dimensionless because it is rescaled with the spherocylinder diameter

(Dsc). The parameter σ is defined as ratio of sphere diameter to spherocylinder

diameter (σ = Dsp/Dsc). In the limit of L/Dsc → 0 the above expression reduces

to a Fourier transform of a sphere with unit diameter. The stability matrix S for a

mixture of spherocylinders and spheres has the following form

S =

















η(1 − ρsp)(1 + 4(1 − ρsp)ηS(0, 1, k))
4

2ρsp(1 − ρsp)η
2S(

L

Dsc

, 1 + σ, k)

σ6(
2

3

L

Dsc

+ 1)2
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2ρsp(1 − ρsp)η
2S(

L

Dsc

, 1 + σ, k)

σ6(
2

3

L

Dsc

+ 1)2

ηρsp(
σ6(

3

2

L

Dsc

+ 1)

4
+ ηρspS(2

L

Dsc

, 2σ, k))

σ6(
2

3

L

Dsc

+ 1)2

































(7.7)

where ρsp denotes partial volume fraction of spheres and varies between 0 and 1 while

η denotes total volume fraction. Note that the terms in matrix elements S11 and

S22 proportional to η are due to configurational entropy while terms proportional

to η2 are due to free volume entropy. As k → 0 the condition det(S) = 0 reduces

to the usual thermodynamic condition for the stability of the system against bulk

phase separation.

To reconstruct the stability diagram from the determinant we slowly increase

the total volume fraction η. At a certain value of total volume fraction (ηc) the

determinant of S will equal zero for a specific wavevector (kc). If the wavevector kc

obtained has a finite value it implies that system is undergoing a layering transition.

On the other hand, the condition det(S) = 0 when kc = 0 implies complete demixing.

Once we obtain values of ηc and kc we can find out the ratio of amplitudes from the

following formula

a1

a2

= −S12(ηc, kc)

S11(ηc, kc)
. (7.8)

A positive value of the amplitude ratio implies that the spheres and spherocylinders

are in the same layer (the periodic modulations are in phase), while a negative value

implies that the spheres and spherocylinders intercalate (the periodic modulations

are out of phase).
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