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Solving the Poisson—Boltzmann equation to obtain interaction energies
between confined, like-charged cylinders
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We numerically solve the nonlinear Poisson—Boltzmann equation for two cylinders confined by two
parallel charged plates. The repulsive electrical double layer component of the cylinder pair
potential is substantially reduced by confinement between like-charged plates. While the effective
cylinder surface charge is increased by the confinement, the effective interaction screening length is
reduced, this effect being dominant so that the repulsive confined cylinder—cylinder interaction
potential is reduced. €1998 American Institute of Physids$0021-960808)50144-4

I. INTRODUCTION dues attracted to the positive charge counterion cloud be-
tween them, a repulsive entropy terrion/solvent configu-

Recent experiments have cast doubts that the DLVO pair_,. . . . )
rational entropy decreasing with decreasing cylinder

otential correctly describes the pair interaction between . . : .
P y b eparatiojy and a repulsive chemical potential tertthe

like-charged colloids in aqueous suspension in a confined teri ber is d db ‘ h d
region where the colloid motions are being restricted by th&ounterion humber s decreased by surtace charge condensa-

confining double layer. Long range attractive potentials Ogiop as the cylinders approach each ojh@hile at constant
order 1K T in strength have been observed Additionally cylinder surface charge, the EDL has only two parts: an at-

there is interest in whether shorter range interactions betwedfCtiveé electrical term and a dominant repulsive entropy

like-charged cylinders in monovalent electrolytes can pelerm(with constant surface charge counterion number is con-

come attractive under certain circumstantésHere we ex-  Stank: _ _ _ _ _

amine the problem of long range interactions between paral- The two dimensional problem of circles confined by line

lel like-charged cylinders confined between Iike-chargeoChargeS is equivalent to parallel cylinders confined by walls

plates by numerically solving the two dimensiof2D), con- in three dimensions. Numerical computations of the nonlin-

fined, nonlinear Poisson—Boltzmann equation. ear PB equation were performed principally for two circles
of constant(dimensionlesscharge density ¢=d¢./dn,

wheren is the normal to the surfageonfined by two con-

Il. NUMERICALLY SOLVING THE 2D, CONFINED stant(dimensionlesspotential line chargesdji,) as shown
NONLINEAR POISSON-BOLTZMANN EQUATION in Fig. 1. The boundary condition was usually constant

Two water-solvated like-charged cylinders experiencecharge on the cylinders and always constant potential on the
an electrical double layefEDL) repulsion, their behavior confining charged walls because we supposed that the cylin-
being governed by the nonlinear Poisson—BoltzmgpB)  ders possess strong acid groups, typical of surface groups
equation, which dictates both the potential and simple iorsuch as polystyrene sulfonate, while we assume the confining
concentration distributions in their vicinity: walls were made of glass, which contains a high density of

. weak acid silanol groups.

VZ¢=rx?sinh, @ Our use of a constant potential glass boundary condition
whereV? is the scalar Laplacian operating upon the dimenneeds further clarification. This is a standard low surface
sionless potentiady, which equals the scalar potentialdi- potential, weak acid surface group boundary condti@md
vided byKgT/ze, with e being the quantum of charge amd is enforced at the outer Helmholtz plat®HP) where the
the charge of a single counterio. ! is the Debye screening compact, or Stern, layer ends by association dissociation
length. Assuming the simple ions to be monovalentequilibria of weak acid surface groups and also two dimen-
KgT/ze=25.69 mV at 298 K. sional mobility of counterions within the compact layer. This

The EDL interaction forms the repulsive component ofjayer is a highly concentrated monolayer of aqueous counte-
the DLVO potential between two like-charged colloidal par-rions typically containing 90% of the glass countercharge
ticles. At constant thermodynamic volume the Helmholtzgng well over 100 mV of potential change so that the result-
free energy is appropriate for describing the EDL interactionng glass boundary condition which faces the electrolyte at
between two like-charged colloidal particles. At constantihe OHP is a low(usually less than 100 mVconstant
surface potential, the EDL interaction energy has three pa”%jotential.lo'“ Our results depend upon this glass regulating
an attractive electrical terrtnegative cylinder surface resi- .qnstant potential boundary condition’s ability to stand up
under compression. Should it fail, then there would follow
3Electronic mail: ospeckm@rockvax.rockefeller.edu electric field lines leaking into the low dielectric glass and
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930 cessor, and by using a successive overrelaxat®@R*

algorithm employing a SOR factor of 1.85. Total free ener-

gies TFEs for a given separatianwere obtained via the

Helmholtz prescription from OverbeéR,so that a circle—

c circle interaction potential could subsequently be con-
structed. Then we made a two parameter fit of the Helmholtz

r interaction energy to
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FIG. 1. Geometry for solving the 2D, confined, nonlinear Poisson— 72 e Klocal

Boltzmann equation. Lengths are in grids of a 2D square lattice, where the VEDL,ZD:_ZG F——, 2
reservoir, or bulk screening length, is 6—30 grids. Typically, a constant L \/F

potential boundary conditio(BC) is imposed on the confining line charges,

a constant charg@otential slopg BC is imposed on the circles, and a free Z/L being the cylinder’'s charge per unit length. The fit net-

BC is employed at the left and right boundaries of the sgag&apolating  ted Klgclal and a geometric prefact@F depending upon local

the local potential slope, which equals zero far from the cijclése space’s — goraening length and particle radius. Between spheres in
width was chosen so that the circle—circle interaction potentials were insen-

: : 16
sitive to increases in widttt is the closest distance between the circle and thré€ dimensiong3D

the line, andr is the center—center separation between the circles, all in eXlocal?a
grids. ] = — 3
3D 29
(1+ Kiocad)
- . while between cylinders in two dimensions
polarizing electron clouds. It would then become important
to account for unscreened interactions between these polar- e*locaPa @)

ized electron clouds. In this article the limited constant po- GFZD:(1+2K|063@)2'

tential confining boundary case is discussed. A completxierh fit led that f the bulk ing lerath
treatment would include the field inside the glass, a model o ese Tiis revealed that use ot tne bulk screening lergtn
as not appropriate for the confined circle—circle interaction.

the glass—water interface with a regularizing boundar))"b\v the circl i inal fined by the i h
condition?? as well as calculation of the field between the’'> € CIFCIES Were Increasingly confined by the fine charges,

charged circles. Although it is expected that the constan}he circle—circle interaction’s effective screening length was
potential glass boundary condition would remain valid at ound to decrease in a systematic way, with the line charge

compressions between surfaces down to one Screenincﬁo)un;tﬁnor)sIs,cre(:fnmtg thehC|rcg—LC|rcIGeF|ntera]?t|ond tln;ddr
length'® there is some evidence that under extreme compreg- n, the circle’s effective charg(L) was found to be

sion it is in fact the case that field lines are traversingmcre"’w’ed by ’the confinement, ]
through the external dielectricThe inclusion of regularizing Overbeek's free energy bookkeeptfigoes as follows:
boundary condition€ is a direction for future research. total free energy TFE=EFE+CFE, 5
There is zero electric field within the circles. Note that
the constant surface charge boundary condition on the circles
will not be a problem because field line penetration into the
low dielectric circles causes only a small perturbation in the

circle—circle interactior(see Fig. 9. de
-2 f b ds
S

EFE=electrical free energyEE—-TAS, (6)

CFE =chemical free enerdy

A free boundary condition was employed at the left and =
right edges of the spadat these edges we extrapolated the
local potential slope in the direction parallel to the confining
lines, which was equal to zero, since these boundaries were = —zf [(V )2+ k?p sinhp]dA, (7)
many tens of screening lengths from the circle edges; see A
Fig. 4). The space’s width was chosen so that the circle—

dn

circle interaction potentials were insensitive to increases in  EE*=electrical energ’yzf (V)2dA, (8
this width. A

The geometrical details of our numerical simulation are
as follows. Our circle’s radiua was fixed at 36 grids of a 2D TAS*=-2«? L(l— coshg+ ¢ sinh¢)dA, C)

square lattice, the screening length? varied from 6 to 30

grids, while the space was made 930 grids in length in ordewhere “*” indicates a dimensionless 2D energyS repre-

to avoid edge effects. The distance from the circles’s surfaceents a small element of constant potential boundarydénd
to the line charge was varied from 6 tg screening lengths. a small area of electrolyte. Converting a 2D dimensionless
Venturing much belowkc= 3 was found to introduce coarse free energy into a 3D dimensionful one requires multiplying
graining errors, and a more sophisticated multigrid relaxatiorby kgT, by 1/47, and by one half the number of Bjerrum
algorithmt* would be necessary in order to accurately tracklengths that the circular cylinders extend in theirection’

the highly curved potential function in this very strongly Let us take Fig. 2 as an example: if its cylinders were 500
confined regime. Potential fields for fixed circle and linenm in radius,x =280 nm(in order thatka=1.8), and the
boundary conditionsg, and ! were obtained by numeri- cylinders were 1000 nm in length, then we should multiply
cally solving the nonlinear Poisson—Boltzmann equation ortheir  dimensionless 2D energies bykgT(1/4)

a Silicon Graphics work station having a MIPS R4400 pro-X (1000 nm/1.4 nmy57kgT, i.e., atkr=10, kc=6 the
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FIG. 2. Reduction of interparticle repulsion between a pair of charged rod$-1G. 3. The three component terms of the circle—circle interaction free
due to the rods being confined by a pair of charged plated. 2D dimensionlesmergy for the case in Fig. 2 of strong confinement are plotted vs circle
TFEs vs circle—circle separations for the case where inverse screening center—center separatior, where EE is electrical energy, always attrac-
length times circle radiuxa=1.8, and as a function of circle edge-line tive, —TAS due to ion/solvent configurational entropy, always repulsive,
separationcc. Note that in order to obtain a three dimensional free energyand CFE is a weak attractive chemical free endtbg line-charge counter-
one must multiply TFE bykgT/4ar and by the number of Bjerrum lengths ion number increases when circles are close toggtNetice that the repul-
that the circular cylinders extend in tzedirection. The circle BC is 0.0507  sive ion/solvent configurational entropy term is dominant, meaning that the
constant potential slopéorresponding to a1 free surface potential if total potential is repulsive and that this repulsion is due to osmotic pressure
xa=1.8) and the confining line BC is-2 constant potential. The lines are forces. The conditions are two constan® potential line charges strongly
two parameter fits of the data points to Ef), thereby obtaining the geo- confining (kc=0.5) two interacting constant potential slope circles
metric factor GF andkj,, as a function of circle edge-line separatien. ~ (0.507 slope appropriate to a freel potential if ka=1.8).
The repulsive interaction is substantially reduced and the local Debye
screening length is shortened by the presence of the charged plates.
creased from the bulk value by close confinement of the line
charges.

cylinders would experience about a kgT repulsion. The Figure 3 shows a breakdown of the relative contributions
free energies obtained from numerical solutions of the PBnade to the circle—circle interaction potential by the electri-
equation for interacting flat plates compared well against theal, entropic, and chemical free energi&gs. (5)—(9)] for
tabulated values in the Verwey—Overbeek monogrd@nd  the case in Fig. 2 of strongly confined circles. The case of
also against Israelachvili’s Fig. 12.19. two constant potential line charges confining two constant

Figure 2 shows seven EDL potential barriers betweercharge circles contains two attractive and one repulsive term.
two circles confined by line charges arranged in the geomThe smaller of the attractive terms is the chemical free en-
etry depicted in Fig. 4. The dimensionless THEs. (5)—  ergy term(the number ofine-chargecounterions increasing
(9)] is plotted versus the circle’s center to center separation as the circles move togethefhe larger attractive term is
The circles have a free potential equal+d, but it is their  electrical in origin arising from the counterions located in
surface charges which are held constant during the circlebetween the two circles—like in a hydrogen molecule. How-
circle interaction; this is because the circle surfaces are agver, at 300 K, the repulsive entropic term dominates the
sumed to possess strong acid groups which resist charge coattractive terms.
densation. Their constant potential slopes are equal to Figure 4 shows three contour plots associated with Fig. 2
0.0507, the appropriate slope for-&l potential free surface and appropriate to greater or lesser degrees of confinement.
whenka=1.8, i.e., the screening length is 20 grids, and thewhen the circles are more confined, the contours surround-
circle’s radiusa is fixed at 36 grids. Here the confining line ing each circle become more elongated, reflecting the fact
charges are held at constan® potential, and are thus said to that many of the circle’s electric field lines are now termi-
be perfectly regulating because their surfaces are assumedrtating locally in the line-charge’s double layer. One could
be composed of weak acid groups. Circle edge-line chargalmost think that the field lines were terminating in partial
separationc is varied from3 to 6 « 1. Circle motion is image charges created in the line-charge double layer.
assumed to be adiabatically cut off from the motion of the  Figures 5, 6, and 7 are all connected to each other. In
ion gas, i.e., the ions are assumed to readjust to the nefig. 5 the confining line potential is increased+t® and the
circle configurations with extreme rapidity. Circle separationconfined circle—circle interaction screening Ieng¢@§a| is
r begins at 15 ! and is decremented by units of 051 appreciably lessened when compared with that of Fig. 2
down to 9«1, all the while solving the PB equation and which has only a—2 potential confining line. The large line
subsequently recording the configuration’s Helmholtz freecapacitance acts to hide the circles from each other. Figure 6
energy TFE. A two parameter fit of ti{g TFE) data pointsis  gives the relationship between confining line potential and
made to the 2D EDL potential functiofEq. (2)], thereby local screening length, while Fig. 7 shows for a free line
obtaining the interaction screening Ieng.tﬁcla,, and observ- charge the relationship between confining line potengtigl
ing that this circle—circle interaction screening length is de-and line capacitance per unit lengiiL.
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FIG. 5. Reduction of interparticle repulsion by increasing the confining
potentials compared to Fig. 2. Plots of TFE vs circle—circle separatioh (

for 0.0507 constant potential slope circles confined by line charges held at a
—6 potential, andca=1.8. The circle—circle barrier potential is reduced by
approximately one order of magnitude when the circles are severely con-
fined. Note that the degree of confinemeutis varied from 6 to%.

mined by a Grahame equation modified to account for the
confinement? Essentially, strong confinement brings the
zero potential line additional capacitance due to its sharing of
the confined circle’s counterions. Interestingly, the local in-
teraction screening length is independent of the sign of the
surface charge on the confining lines. Apparently as regards
FIG. 4. Contour plots of the dimensionless potentil for the conditions ~ the local screening length, it does not matter if a negative
shown in Fig. 2. The circles have constant chaitheir boundary potential ~ field line sourced from a circle terminates in the line's
slope which equals 0.0507 corresponds to an unconfined potential equal @ouble layer on a positive counterion or on the positive line
—1 whenka=1.8) and the line charges are at constar? potential. All Charge itself.

potentials are negativecrr =10 for all three plots. There is no electric field -
within the black circle interiors(A) The circle—circle interaction is virtually The second Eq(2) fitting parameteiGF stands for the

undisturbed by the distant charged lines,=6. (B) The circle—circle in- DLVO geometric factaft® which accounts for the internal
teraction is becoming weakened by confinement=2. Note the increasing  volume of the cylinder being excluded to the screening ions.

surface potential(C) Strong confinementxc=0.5. Field lines normally For a typical colloidal particle there are two effects compet-
involved in the circle—circle repulsive interaction are being redirected, ter-

minating on the counterions in the charged-line’s double layer.

95 T T .
dine/dn
oy = 9Pme/dN). (10) 9t ]
d’line

The potential slope in Fig. 7 fits the Grahame equafion o5 | |

d g

—ib:KZ sinhf. (11 1

dn 2 2 8t 1
Also note in Fig.7 the capacitance per unit length’s nonzero
y intercept(~0.05=«) shows that line capacitance goes like a5+ 1
inverse screening lengthfor a free line whenp,;,. is held at
zero potential(obtained by dividing the right-hand side of . . .
the Grahame equation b#;,., while taking the limit as '?10‘0 5.0 0.0 5.0 10.0
dine— 0). In Fig. 6 we plotted local screening length versus Prine

confining line potential and obtained Gaussian functions

symmetric about the zero of potential. Notice that the locaFIG. 6. Ratio of the local screening lengti, to the bulk screening length

screening length is 0.851 for zero potential line charges ktasa function of the confining line potentig},e boundary condition.

strongly confining the circle—circle interactiokg = 0.5, and The curve is syn_1metr|c with rgspect to the COI’]fInII’lg line potential. The
o . . conditions arexa=1.8, closed circles correspond k&= 0.5 (strong con-

that this is connected with the fact that a zero potential CONfinement, open squares tac=1 (weaker confinementwhile the circles

fining line charge possesses an increased capacitance detedve constanichargg potential slope-0.0507.
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FIG. 9. Local screening length vs the confinement distance between the
FIG. 7. Plots for a free line charge of its boundary potential slepe circle and the line chargesc, for various circle and line boundary condi-
(=déine/dn, closed circlesand its intrinsic capacitance per unit length tions, where¢= y/(KgT/e€) is a dimensionless surface potentiBIC) and
C/L[= 0/ ¢jne, Open squares; see H40)] vs free line potentiabp.. The  g=d¢/dn a surface charge BC, anca=1.8. The lines are one parameter
line tracing the closed circles is a fit to the Grahame equatian (11)]. fits to factorA in Eq. (12). The closed data points demonstrate the line

potential’'s control over the local screening length. Meanwhile changing the

circle BC had little effect on the interaction screening length, as seen by

ing to set effective surface char@a/ﬁ as one increases comparing the closed circle, open circlg, _and open square da_ta sets. Note
. . . . , that a constant charge BC on the confining plate corresponding—+@ a
the concentration of potential determining io8DI's). A potential, i.e., the open diamorid=0.270 had a significantly smaller ef-
PDI electrolyte is contrasted to an indifferent electrolyte, thefect on local screening length than did i< confining potential counter-
distinction being that an indifferent electrolyte is unable topart. This probably had to do with the fact that line charge counterion
bind to surface residues. The first effect concerns binding orPumber increased when the circles were close together, like for the case of
. . constant potential confining lindsee Fig. 3.
a PDI to a surface residue, thereby decreaginwhile the
second occurs as the concentration gradient of PDI’s in the
vicinity of a charged surface is increased, thus making the
particle appear to have increased its surface charge. Thi§ig. 8 and i,y (Fig. 6). Local screening length is not
second effect is the one accounted for by DLVGE. If one  concerned with the sign of the surrounding line charge, but
holds Z constant while increasing ionic strength, then oneGF certainly is.
observes an increasing effective particle surface chaige After kioy @ a function ofc is obtained from Eq(2)
=7 /GF due to the steepened counterion concentration graSee Figs. 2 and)Sve make a one parameter fit to the func-
dient. We see in Fig. 8 thaBF increases in a Gaussian ton
fashion with increasingly negative confining line potential. ool g AeTr (12)
Compare the behaviors of the two fitting paramet&® local
and plot the result in Fig. 9. Local screening length goes like
the inverse square root of local ionic strengity,£,~n~°9),
which itself goes like an exponential function of the local
potential (Boltzmann factorn~e~ %), and finally this local
potential goes like a decaying exponential function of dis-
tance from a charged surfa¢ep~e™ “°).
150000 - 1 Figure 10 shows that decreasiggi.e., increasing the
degree of confinement, increases t@& for all of the
constant-charge circle—circle interactions. In contrast, for the
case of confined constant-potential circles the square data
10000.0 ] points show that the combinatiorz{/L?)GF actually de-
creases. For strong confinemestnall c) condensation of
counterions decreases the circle’s surface chaidge and
this effect wins out over an increasigf.
5000.0 . ' ‘ Finally we vary the bulk screening length from 6 to 30
-10.0 -5.0 0.0 5.0 10.0 grids for various amounts of confinement, and obtain the
Piine dependence of the local screening length on the bulk screen-
ing length for these differing degrees of confinemérig.
FIG. 8. Plot of g%/L%)GF=2*2/L2 vs line potentiakp,e for two confined 11). In our 2D geometry there are three independent length

interacting 0.0507 constant potential slope circles wkar-1.8. Z*/L is Lo - - - i )
the effective surface charge on the circle. The closed circular data point§cale5' circle radiugfixed at 36 grids circle edge-line sepa

. . B _1 .
correspond taxc=0.5 (strong confinemelt and the open squares k& ration ¢ (varying from 10 to 40 grids and ™ (varying
=1 (weaker confinemeht from 6 to 30 grids, i.exa decreases from 6 to 1.2The

20000.0 T T ;

@@L} GF
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FIG. 10. Squared surface charge per unit length times the DLVO geometri IG. 11. Local screening lengitjocy as a function of bulk screening length
factor Z2/L?)GF [see Eq.(2)] vs confinementcc for various circle and or various degrees of confinement. The circles have a constant potential
line boundary conditions, wherg= ¢/(KgT/e) is a dimensionless surface slope=0.0507(cqrrespond|ng to &1 free surface po_tentlal only Whe{g
potential BC,oc=d¢/dn a surface charge BC, anda=1.8. Only in the =18 and the I|n_e charges_ are held at-e potential. Loc_al screening
constant potential circle case where surface charge regulation acts to d\%—ﬁg:zSc‘i’;'jreeszl?;:';edsgi'f:;t ;c; i?;tci);r:hv?/atgtzl fr?oexi?::trglless '2 gJﬁ(gS'g?een_
creaseZ does Z?/L?)GF decrease with increasing confinement. _ : P ' Was app ey 5.5 bl

ing lengths. The diagonal correspondskig.,=«~ ", open circles ta=10
grids, open squares =20 grids, open diamonds =40 grids, and the
] ) ] ) . ] circle radius is 36 grids. The local screening length increases to the bulk
circle—circle interaction’s length scalg,, is a function of  screening length as the confining line charges move apart.
these three. As one increases the bulk screening length, one
decreases the space’s midplane potential towards the line po-
tentlal (d)"ne: —2in Flg 1]), and thus morg Of' the circle’s ACKNOWLEDGMENTS
field lines traverse a region where the local ionic strength has
been increased by a factor of c¢st2)=3.76 times the bulk This research was supported by DOE Grant No. DE-
ionic strength(counterions increased by the fackfr while ~ FG02-87ER45084.
the coions decrease by 2). Hence the screening length
“seen” by these field lines will be reduced by a factor

1/\/3.76=0.52, while for the case =6 most of the inter-  1g. m. Kepler and S. Fraden, Phys. Rev. L&, 356 (1994).
action field lines sample electrolyte Whergcla|= kL zJ- C. Crocker and D. G. Grier, Phys. Rev. L&, 352 (1994
Solutions to the confined nonlinear Poisson—Boltzmann, 3 € Crocker and D. Grier, Phys. Rev. L&t¥, 1897(1996.

. . . - *A. E. Larsen and D. G. Grier, Natuféondon 385, 230(1997.
equation for like-charged cylinders appear to be repulsivesy; o Carbajal-Tinoco, F. Castro-RomaJ. L. Arauz-Lara, Phys. Rev. E

screened, Yukawa-like potentials, having an effective screen-53, 3745(1996.
ing lengthx e, Which is found to be a decreasing function of °V. A. Bloomfield, Biopolymers31, 1471(1991).

: : - : : ’R. Podgornik, D. Rau, and V. A. Parsegian, Biophys56].962 (1994.
increasing confm_ement. The effect|v_e charg_e of the c_yllndersal X. Tang, 5. Wong, P. Tran, and P. Janmey, Ber. Bunsenges. Phys.
Z*=(ZIL)JGF is found to be an increasing function of chem.100 1 (1996.
increasing confinement. °N. Gronbech-Jensen, R. J. Mashl, R. F. Bruinsma, and W. M. Gelbart,
Phys. Rev. Lett78, 2477(1997.
10The Colloid Chemistry of SiligaAdvances in Chemistry Vol. 234, edited
by H. E. BergnaAmerican Chemical Society, Washington, DC, 1294

B icall ving the two di . | i E. J. W. Verwey and J. TH. G. OverbeeRheory of the Stability of
y numerically solving thé two dimensional, nonlinear, Lyophobic ColloidgElsevier, New York, 1948 pp. 195-199.

confined Poisson—Boltzmann equation we have found th&ep. v. C. Chan, R. M. Pashley, and L. R. White, J. Colloid Interface Sci.

the electrical double layer repulsion can be significantly de- 77, 283(1980.

creased between two parallel cylinders when confined bel_sJ. N. Israelachvili,intermolecular and Surface Forcggcademic, New
- York, 1985.

tween tW(_) Chargeq plates b.ecause th? Confmmg double Iay”W. H. Press, S. A. Teuklosky, B. P. Flannery, and W. T. Vetterling,

ers constitute a high capacitance region which screens thenumerical Recipes in @Cambridge University Press, Cambridge, 1988

cylinder—cylinder interaction. izi L (; Oc\j/ersbel_edk,SCOHOFi)dhs igﬁilifglg(]}%o.
; : : . K. Sood, Solid State Phyg5, )
Note ?dded in proofA r-ecent numerical solution t,o the, 1A, K. Sengupta and K. D. Papadopoulos, J. Colloid Interfacel®. 135
PB equation shows attraction between spheres confined in g1g93.

cylindrical pOI’e%8 18R. W. Bowen and A. O. Sharif, Natut¢&ondon 393 663(1998.

IIl. CONCLUSIONS



