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Solving the Poisson–Boltzmann equation to obtain interaction energies
between confined, like-charged cylinders

Mark Ospecka) and Seth Fraden
The Complex Fluids Group, Martin Fisher School of Physics, Brandeis University, Waltham,
Massachusetts 02454

~Received 3 June 1997; accepted 17 August 1998!

We numerically solve the nonlinear Poisson–Boltzmann equation for two cylinders confined by two
parallel charged plates. The repulsive electrical double layer component of the cylinder pair
potential is substantially reduced by confinement between like-charged plates. While the effective
cylinder surface charge is increased by the confinement, the effective interaction screening length is
reduced, this effect being dominant so that the repulsive confined cylinder–cylinder interaction
potential is reduced. ©1998 American Institute of Physics.@S0021-9606~98!50144-4#
pa
e

ne
th
o

e
be

ra
e

c

io

n

n

o
r-
ltz
io
n
r

i-

be-

er

nsa-

at-
py
on-

e
lls

lin-
es

nt
the

ylin-
ups

ning
of

tion
ce

tion
en-
is
nte-
ge
ult-

at

ing
up
w

nd
I. INTRODUCTION

Recent experiments have cast doubts that the DLVO
potential correctly describes the pair interaction betwe
like-charged colloids in aqueous suspension in a confi
region where the colloid motions are being restricted by
confining double layer. Long range attractive potentials
order 1KBT in strength have been observed.1–5 Additionally
there is interest in whether shorter range interactions betw
like-charged cylinders in monovalent electrolytes can
come attractive under certain circumstances.6–9 Here we ex-
amine the problem of long range interactions between pa
lel like-charged cylinders confined between like-charg
plates by numerically solving the two dimensional~2D!, con-
fined, nonlinear Poisson–Boltzmann equation.

II. NUMERICALLY SOLVING THE 2D, CONFINED
NONLINEAR POISSON–BOLTZMANN EQUATION

Two water-solvated like-charged cylinders experien
an electrical double layer~EDL! repulsion, their behavior
being governed by the nonlinear Poisson–Boltzmann~PB!
equation, which dictates both the potential and simple
concentration distributions in their vicinity:

¹2f5k2 sinhf, ~1!

where¹2 is the scalar Laplacian operating upon the dime
sionless potentialf, which equals the scalar potentialc di-
vided byKBT/ze, with e being the quantum of charge andz
the charge of a single counterion.k21 is the Debye screening
length. Assuming the simple ions to be monovale
KBT/ze525.69 mV at 298 K.

The EDL interaction forms the repulsive component
the DLVO potential between two like-charged colloidal pa
ticles. At constant thermodynamic volume the Helmho
free energy is appropriate for describing the EDL interact
between two like-charged colloidal particles. At consta
surface potential, the EDL interaction energy has three pa
an attractive electrical term~negative cylinder surface res

a!Electronic mail: ospeckm@rockvax.rockefeller.edu
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dues attracted to the positive charge counterion cloud
tween them!, a repulsive entropy term~ion/solvent configu-
rational entropy decreasing with decreasing cylind
separation!, and a repulsive chemical potential term~the
counterion number is decreased by surface charge conde
tion as the cylinders approach each other!. While at constant
cylinder surface charge, the EDL has only two parts: an
tractive electrical term and a dominant repulsive entro
term~with constant surface charge counterion number is c
stant!.

The two dimensional problem of circles confined by lin
charges is equivalent to parallel cylinders confined by wa
in three dimensions. Numerical computations of the non
ear PB equation were performed principally for two circl
of constant~dimensionless! charge density (s5dfcirc /dn̂,
wheren̂ is the normal to the surface! confined by two con-
stant~dimensionless! potential line charges (f line) as shown
in Fig. 1. The boundary condition was usually consta
charge on the cylinders and always constant potential on
confining charged walls because we supposed that the c
ders possess strong acid groups, typical of surface gro
such as polystyrene sulfonate, while we assume the confi
walls were made of glass, which contains a high density
weak acid silanol groups.

Our use of a constant potential glass boundary condi
needs further clarification. This is a standard low surfa
potential, weak acid surface group boundary condition10 and
is enforced at the outer Helmholtz plane~OHP! where the
compact, or Stern, layer ends by association dissocia
equilibria of weak acid surface groups and also two dim
sional mobility of counterions within the compact layer. Th
layer is a highly concentrated monolayer of aqueous cou
rions typically containing 90% of the glass counterchar
and well over 100 mV of potential change so that the res
ing glass boundary condition which faces the electrolyte
the OHP is a low~usually less than 100 mV! constant
potential.10,11 Our results depend upon this glass regulat
constant potential boundary condition’s ability to stand
under compression. Should it fail, then there would follo
electric field lines leaking into the low dielectric glass a
6 © 1998 American Institute of Physics
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polarizing electron clouds. It would then become importa
to account for unscreened interactions between these p
ized electron clouds. In this article the limited constant p
tential confining boundary case is discussed. A comp
treatment would include the field inside the glass, a mode
the glass–water interface with a regularizing bound
condition,12 as well as calculation of the field between t
charged circles. Although it is expected that the const
potential glass boundary condition would remain valid
compressions between surfaces down to one scree
length13 there is some evidence that under extreme comp
sion it is in fact the case that field lines are travers
through the external dielectric.3 The inclusion of regularizing
boundary conditions12 is a direction for future research.

There is zero electric field within the circles. Note th
the constant surface charge boundary condition on the cir
will not be a problem because field line penetration into
low dielectric circles causes only a small perturbation in
circle–circle interaction~see Fig. 9!.

A free boundary condition was employed at the left a
right edges of the space~at these edges we extrapolated t
local potential slope in the direction parallel to the confini
lines, which was equal to zero, since these boundaries w
many tens of screening lengths from the circle edges;
Fig. 4!. The space’s width was chosen so that the circ
circle interaction potentials were insensitive to increases
this width.

The geometrical details of our numerical simulation a
as follows. Our circle’s radiusa was fixed at 36 grids of a 2D
square lattice, the screening lengthk21 varied from 6 to 30
grids, while the space was made 930 grids in length in or
to avoid edge effects. The distance from the circles’s surf
to the line chargec was varied from 6 to1

2 screening lengths
Venturing much belowkc5 1

2 was found to introduce coars
graining errors, and a more sophisticated multigrid relaxat
algorithm14 would be necessary in order to accurately tra
the highly curved potential function in this very strong
confined regime. Potential fields for fixed circle and li
boundary conditions,c, andk21 were obtained by numeri
cally solving the nonlinear Poisson–Boltzmann equation
a Silicon Graphics work station having a MIPS R4400 p

FIG. 1. Geometry for solving the 2D, confined, nonlinear Poisso
Boltzmann equation. Lengths are in grids of a 2D square lattice, where
reservoir, or bulk screening length, is 6–30 grids. Typically, a cons
potential boundary condition~BC! is imposed on the confining line charge
a constant charge~potential slope! BC is imposed on the circles, and a fre
BC is employed at the left and right boundaries of the space~extrapolating
the local potential slope, which equals zero far from the circles!. The space’s
width was chosen so that the circle–circle interaction potentials were in
sitive to increases in width.c is the closest distance between the circle a
the line, andr is the center–center separation between the circles, a
grids.
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cessor, and by using a successive overrelaxation~SOR!14

algorithm employing a SOR factor of 1.85. Total free en
gies TFEs for a given separationr were obtained via the
Helmholtz prescription from Overbeek,15 so that a circle–
circle interaction potential could subsequently be co
structed. Then we made a two parameter fit of the Helmh
interaction energy to

VEDL,2D5
Z2

L2
GF

e2k localr

Ar
, ~2!

Z/L being the cylinder’s charge per unit length. The fit ne
tedk local

21 and a geometric prefactorGF depending upon loca
screening length and particle radius. Between sphere
three dimensions~3D!16

GF3D5
ek local2a

~11k locala!2 , ~3!

while between cylinders in two dimensions

GF2D5
ek local2a

~112k locala!2 . ~4!

These fits revealed that use of the bulk screening lengthk21

was not appropriate for the confined circle–circle interacti
As the circles were increasingly confined by the line charg
the circle–circle interaction’s effective screening length w
found to decrease in a systematic way, with the line cha
counterions screening the circle–circle interaction. In ad
tion, the circle’s effective charge (Z/L)AGF was found to be
increased by the confinement.

Overbeek’s free energy bookkeeping15 goes as follows:

total free energy5TFE5EFE1CFE, ~5!

EFE5electrical free energy5EE2TDS, ~6!

CFE*5chemical free energy*

522E
S
S f

df

dn̂
D dS

522E
A
@~¹f!21k2f sinhf#dA, ~7!

EE*5electrical energy*5E
A
~¹f!2dA, ~8!

TDS* 522k2E
A
~12coshf1f sinhf!dA, ~9!

where ‘‘* ’’ indicates a dimensionless 2D energy,dS repre-
sents a small element of constant potential boundary, anddA
a small area of electrolyte. Converting a 2D dimensionl
free energy into a 3D dimensionful one requires multiplyi
by kBT, by 1/4p, and by one half the number of Bjerrum
lengths that the circular cylinders extend in thez direction.17

Let us take Fig. 2 as an example: if its cylinders were 5
nm in radius,k215280 nm~in order thatka51.8), and the
cylinders were 1000 nm in length, then we should multip
their dimensionless 2D energies bykBT(1/4p)
3(1000 nm/1.4 nm)557kBT, i.e., at kr 510, kc56 the
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cylinders would experience about a 0.6kBT repulsion. The
free energies obtained from numerical solutions of the
equation for interacting flat plates compared well against
tabulated values in the Verwey–Overbeek monograph,11 and
also against Israelachvili’s Fig. 12.10.13

Figure 2 shows seven EDL potential barriers betwe
two circles confined by line charges arranged in the geo
etry depicted in Fig. 4. The dimensionless TFE@Eqs. ~5!–
~9!# is plotted versus the circle’s center to center separatior.
The circles have a free potential equal to21, but it is their
surface charges which are held constant during the circ
circle interaction; this is because the circle surfaces are
sumed to possess strong acid groups which resist charge
densation. Their constant potential slopes are equa
0.0507, the appropriate slope for a21 potential free surface
whenka51.8, i.e., the screening length is 20 grids, and
circle’s radiusa is fixed at 36 grids. Here the confining lin
charges are held at constant22 potential, and are thus said t
be perfectly regulating because their surfaces are assum
be composed of weak acid groups. Circle edge-line cha
separationc is varied from 1

2 to 6 k21. Circle motion is
assumed to be adiabatically cut off from the motion of t
ion gas, i.e., the ions are assumed to readjust to the
circle configurations with extreme rapidity. Circle separati
r begins at 15k21 and is decremented by units of 0.5k21

down to 9k21, all the while solving the PB equation an
subsequently recording the configuration’s Helmholtz f
energy TFE. A two parameter fit of the~r,TFE! data points is
made to the 2D EDL potential function@Eq. ~2!#, thereby
obtaining the interaction screening lengthk local

21 , and observ-
ing that this circle–circle interaction screening length is d

FIG. 2. Reduction of interparticle repulsion between a pair of charged
due to the rods being confined by a pair of charged plated. 2D dimensio
TFEs vs circle–circle separationskr for the case where inverse screenin
length times circle radiuska51.8, and as a function of circle edge-lin
separationkc. Note that in order to obtain a three dimensional free ene
one must multiply TFE bykBT/4p and by the number of Bjerrum length
that the circular cylinders extend in thez direction. The circle BC is 0.0507
constant potential slope~corresponding to a21 free surface potential if
ka51.8! and the confining line BC is22 constant potential. The lines ar
two parameter fits of the data points to Eq.~2!, thereby obtaining the geo
metric factor GF andk local

21 as a function of circle edge-line separationkc.
The repulsive interaction is substantially reduced and the local De
screening length is shortened by the presence of the charged plates.
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creased from the bulk value by close confinement of the
charges.

Figure 3 shows a breakdown of the relative contributio
made to the circle–circle interaction potential by the elec
cal, entropic, and chemical free energies@Eqs. ~5!–~9!# for
the case in Fig. 2 of strongly confined circles. The case
two constant potential line charges confining two const
charge circles contains two attractive and one repulsive te
The smaller of the attractive terms is the chemical free
ergy term~the number ofline-chargecounterions increasing
as the circles move together!. The larger attractive term is
electrical in origin arising from the counterions located
between the two circles—like in a hydrogen molecule. Ho
ever, at 300 K, the repulsive entropic term dominates
attractive terms.

Figure 4 shows three contour plots associated with Fig
and appropriate to greater or lesser degrees of confinem
When the circles are more confined, the contours surrou
ing each circle become more elongated, reflecting the
that many of the circle’s electric field lines are now term
nating locally in the line-charge’s double layer. One cou
almost think that the field lines were terminating in part
image charges created in the line-charge double layer.

Figures 5, 6, and 7 are all connected to each other
Fig. 5 the confining line potential is increased to26 and the
confined circle–circle interaction screening lengthk local

21 is
appreciably lessened when compared with that of Fig
which has only a22 potential confining line. The large line
capacitance acts to hide the circles from each other. Figu
gives the relationship between confining line potential a
local screening length, while Fig. 7 shows for a free li
charge the relationship between confining line potentialf line

and line capacitance per unit lengthC/L.

s
ss

y

e

FIG. 3. The three component terms of the circle–circle interaction f
energy for the case in Fig. 2 of strong confinement are plotted vs ci
center–center separationkr , where EE is electrical energy, always attra
tive, 2TDS due to ion/solvent configurational entropy, always repulsiv
and CFE is a weak attractive chemical free energy~the line-charge counter-
ion number increases when circles are close together!. Notice that the repul-
sive ion/solvent configurational entropy term is dominant, meaning that
total potential is repulsive and that this repulsion is due to osmotic pres
forces. The conditions are two constant22 potential line charges strongly
confining (kc50.5) two interacting constant potential slope circl
~0.507 slope appropriate to a free21 potential ifka51.8).
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C/L5
~df line /dn̂!

f line
. ~10!

The potential slope in Fig. 7 fits the Grahame equation13

df

dn̂
5k2 sinh

f

2
. ~11!

Also note in Fig.7 the capacitance per unit length’s nonz
y intercept~'0.055k! shows that line capacitance goes li
inverse screening lengthk for a free line whenf line is held at
zero potential~obtained by dividing the right-hand side o
the Grahame equation byf line , while taking the limit as
f line→0!. In Fig. 6 we plotted local screening length vers
confining line potential and obtained Gaussian functio
symmetric about the zero of potential. Notice that the lo
screening length is 0.85k21 for zero potential line charge
strongly confining the circle–circle interaction,kc50.5, and
that this is connected with the fact that a zero potential c
fining line charge possesses an increased capacitance d

FIG. 4. Contour plots of the dimensionless potential~f! for the conditions
shown in Fig. 2. The circles have constant charge~their boundary potential
slope which equals 0.0507 corresponds to an unconfined potential equ
21 whenka51.8! and the line charges are at constant22 potential. All
potentials are negative.kr 510 for all three plots. There is no electric fiel
within the black circle interiors.~A! The circle–circle interaction is virtually
undisturbed by the distant charged lines,kc56. ~B! The circle–circle in-
teraction is becoming weakened by confinement,kc52. Note the increasing
surface potential.~C! Strong confinement,kc50.5. Field lines normally
involved in the circle–circle repulsive interaction are being redirected,
minating on the counterions in the charged-line’s double layer.
o

s
l

-
ter-

mined by a Grahame equation modified to account for
confinement.12 Essentially, strong confinement brings th
zero potential line additional capacitance due to its sharing
the confined circle’s counterions. Interestingly, the local
teraction screening length is independent of the sign of
surface charge on the confining lines. Apparently as rega
the local screening length, it does not matter if a negat
field line sourced from a circle terminates in the line
double layer on a positive counterion or on the positive l
charge itself.

The second Eq.~2! fitting parameterGF stands for the
DLVO geometric factor,16 which accounts for the interna
volume of the cylinder being excluded to the screening io
For a typical colloidal particle there are two effects comp

l to

r-

FIG. 5. Reduction of interparticle repulsion by increasing the confin
potentials compared to Fig. 2. Plots of TFE vs circle–circle separation (kr )
for 0.0507 constant potential slope circles confined by line charges held
26 potential, andka51.8. The circle–circle barrier potential is reduced b
approximately one order of magnitude when the circles are severely
fined. Note that the degree of confinementkc is varied from 6 to

1
2.

FIG. 6. Ratio of the local screening lengthk local
21 to the bulk screening length

k21 as a function of the confining line potentialf line boundary condition.
The curve is symmetric with respect to the confining line potential. T
conditions areka51.8, closed circles correspond tokc50.5 ~strong con-
finement!, open squares tokc51 ~weaker confinement!, while the circles
have constant~charge! potential slope50.0507.
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ing to set effective surface chargeZAGF as one increase
the concentration of potential determining ions~PDI’s!. A
PDI electrolyte is contrasted to an indifferent electrolyte,
distinction being that an indifferent electrolyte is unable
bind to surface residues. The first effect concerns binding
a PDI to a surface residue, thereby decreasingZ, while the
second occurs as the concentration gradient of PDI’s in
vicinity of a charged surface is increased, thus making
particle appear to have increased its surface charge.
second effect is the one accounted for by DLVO’sGF. If one
holds Z constant while increasing ionic strength, then o
observes an increasing effective particle surface chargeZ*
5ZAGF due to the steepened counterion concentration
dient. We see in Fig. 8 thatGF increases in a Gaussia
fashion with increasingly negative confining line potenti
Compare the behaviors of the two fitting parametersGF

FIG. 7. Plots for a free line charge of its boundary potential slopes
(5df line /dn̂, closed circles! and its intrinsic capacitance per unit leng
C/L@5s/f line , open squares; see Eq.~10!# vs free line potentialf line . The
line tracing the closed circles is a fit to the Grahame equation@Eq. ~11!#.

FIG. 8. Plot of (Z2/L2)GF5Z* 2/L2 vs line potentialf line for two confined
interacting 0.0507 constant potential slope circles whenka51.8. Z* /L is
the effective surface charge on the circle. The closed circular data p
correspond tokc50.5 ~strong confinement!, and the open squares tokc
51 ~weaker confinement!.
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~Fig. 8! and k local
21 ~Fig. 6!. Local screening length is no

concerned with the sign of the surrounding line charge,
GF certainly is.

After k local
21 as a function ofc is obtained from Eq.~2!

~see Figs. 2 and 5! we make a one parameter fit to the fun
tion

k local
21 5k21e2Ae2kc

~12!

and plot the result in Fig. 9. Local screening length goes l
the inverse square root of local ionic strength (k local

21 ;n20.5!,
which itself goes like an exponential function of the loc
potential~Boltzmann factor:n;e2f), and finally this local
potential goes like a decaying exponential function of d
tance from a charged surface~ f;e2kc).

Figure 10 shows that decreasingc, i.e., increasing the
degree of confinement, increases theGF for all of the
constant-charge circle–circle interactions. In contrast, for
case of confined constant-potential circles the square
points show that the combination (Z2/L2)GF actually de-
creases. For strong confinement~small c! condensation of
counterions decreases the circle’s surface chargeZ/L, and
this effect wins out over an increasingGF.

Finally we vary the bulk screening length from 6 to 3
grids for various amounts of confinement, and obtain
dependence of the local screening length on the bulk scr
ing length for these differing degrees of confinement~Fig.
11!. In our 2D geometry there are three independent len
scales: circle radius~fixed at 36 grids!, circle edge-line sepa
ration c ~varying from 10 to 40 grids!, and k21 ~varying
from 6 to 30 grids, i.e,ka decreases from 6 to 1.2!. The

ts

FIG. 9. Local screening length vs the confinement distance between
circle and the line charge,kc, for various circle and line boundary cond
tions, wheref5c/(KBT/e) is a dimensionless surface potential~BC! and
s5df/dn̂ a surface charge BC, andka51.8. The lines are one paramete
fits to factor A in Eq. ~12!. The closed data points demonstrate the li
potential’s control over the local screening length. Meanwhile changing
circle BC had little effect on the interaction screening length, as seen
comparing the closed circle, open circle, and open square data sets.
that a constant charge BC on the confining plate corresponding to a22
potential, i.e., the open diamond~A50.270! had a significantly smaller ef-
fect on local screening length than did its22 confining potential counter-
part. This probably had to do with the fact that line charge counter
number increased when the circles were close together, like for the ca
constant potential confining lines~see Fig. 3!.
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circle–circle interaction’s length scalek local
21 is a function of

these three. As one increases the bulk screening length
decreases the space’s midplane potential towards the line
tential (f line522 in Fig. 11!, and thus more of the circle’s
field lines traverse a region where the local ionic strength
been increased by a factor of cosh~22!53.76 times the bulk
ionic strength~counterions increased by the factore2 while
the coions decrease bye22!. Hence the screening lengt
‘‘seen’’ by these field lines will be reduced by a fact
1/A3.7650.52, while for the casek2156 most of the inter-
action field lines sample electrolyte wherek local

21 5k21.
Solutions to the confined nonlinear Poisson–Boltzma

equation for like-charged cylinders appear to be repuls
screened, Yukawa-like potentials, having an effective scre
ing lengthk local

21 which is found to be a decreasing function
increasing confinement. The effective charge of the cylind
Z* 5(Z/L)AGF is found to be an increasing function o
increasing confinement.

III. CONCLUSIONS

By numerically solving the two dimensional, nonlinea
confined Poisson–Boltzmann equation we have found
the electrical double layer repulsion can be significantly
creased between two parallel cylinders when confined
tween two charged plates because the confining double
ers constitute a high capacitance region which screens
cylinder–cylinder interaction.

Note added in proof.A recent numerical solution to th
PB equation shows attraction between spheres confined
cylindrical pore.18

FIG. 10. Squared surface charge per unit length times the DLVO geom
factor (Z2/L2)GF @see Eq.~2!# vs confinementkc for various circle and
line boundary conditions, wheref5c/(KBT/e) is a dimensionless surfac
potential BC,s5df/dn̂ a surface charge BC, andka51.8. Only in the
constant potential circle case where surface charge regulation acts t
creaseZ does (Z2/L2)GF decrease with increasing confinement.
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FIG. 11. Local screening lengthk local
21 as a function of bulk screening lengt

for various degrees of confinement. The circles have a constant pote
slope50.0507~corresponding to a21 free surface potential only whenka
51.8! and the line charges are held at a22 potential. Local screening
lengths were obtained by a fit to Eq.~2! of the total free energies in a regio
where circle surface–surface separation was approximately 5.5 bulk sc
ing lengths. The diagonal corresponds tok local

21 5k21, open circles toc510
grids, open squares toc520 grids, open diamonds toc540 grids, and the
circle radius is 36 grids. The local screening length increases to the
screening length as the confining line charges move apart.


