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Abstract

Nonlinear Chemical Dynamics and Synchronization

A dissertation presented to the Faculty of
the Graduate School of Arts and Sciences of

Brandeis University, Waltham, Massachusetts

by Ning Li

Alan Turing’s work on morphogenesis, more than half a century ago, continues to moti-

vate and inspire theoretical and experimental biologists even today. That said, there are

very few experimental systems for which Turing’s theory is applicable. In this thesis we

present an experimental reaction-diffusion system ideally suited for testing Turing’s ideas

in synthetic “cells” consisting of microfluidically produced surfactant-stabilized emulsions in

which droplets containing the Belousov-Zhabotinsky (BZ) oscillatory chemical reactants are

dispersed in oil.

The BZ reaction has become the prototype of nonlinear dynamics in chemistry and a pre-

ferred system for exploring the behavior of coupled nonlinear oscillators. Our system consists

of a surfactant stabilized monodisperse emulsion of drops of aqueous BZ solution dispersed

in a continuous phase of oil. In contrast to biology, here the chemistry is understood, rate

constants are measured and interdrop coupling is purely diffusive. We explore a large set of

parameters through control of rate constants, drop size, spacing, and spatial arrangement of

the drops in lines and rings in one-dimension (1D) and hexagonal arrays in two-dimensions

(2D). The Turing model is regarded as a metaphor for morphogenesis in biology but not

for prediction. Here, we develop a quantitative and falsifiable reaction-diffusion model that

we experimentally test with synthetic cells. We quantitatively establish the extent to which

the Turing model in 1D describes both stationary pattern formation and temporal synchro-

nization of chemical oscillators via reaction-diffusion and in 2D demonstrate that chemical

morphogenesis drives physical differentiation in synthetic cells.
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Chapter 1

Introduction

Men are born ignorant, not stupid.

They are made stupid by education.

Bertrand Russell

Alan Turing (1912 - 1954), English mathematician and logician, was one of the most

influential scientists in history. He is often considered to be the father of modern computer

science. Less well known than his contribution in computer science and artificial intelligence,

The Chemical Basis of Morphogenesis, written in 1952 by Turing[1], was a ground breaking

work on mathematical biology that continues to motivate and inspire theoretical and exper-

imental biologists even today. In this paper, he described how in circular arrays of identical

biological cells and continuous rings of tissue diffusion can interact with chemical reactions

to generate up to six spatial-temporal periodic chemical structures. In the paper he wrote,

“It is suggested that a system of chemical substances, called morphogens, reacting

together and diffusing through a tissue, is adequate to account for the main

phenomena of morphogenesis. Such a system, although it may originally be quite

homogeneous, may later develop a pattern or structure due to an instability of the

homogeneous equilibrium, which is triggered off by random disturbances. Such
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reaction-diffusion systems are considered in some detail in the case of an isolated

ring of cells, a mathematically convenient, though biologically unusual system.

The investigation is chiefly concerned with the onset of instability. It is found

that there are six essentially different forms which this may take. In the most

interesting form stationary waves appear on the ring. It is suggested that this

might account, for instance, for the tentacle patterns on Hydra and for whorled

leaves...”

After 60 years the Turing mechanism remains controversial in biology because of uncer-

tainty in both the reaction kinetics and transport mechanisms. While numerous examples

in biological tissue patterning, such as lateral inhibition between contacting cells in Delta-

Notch signaling[2, 3, 4], resemble the reaction-diffusion (RD) systems Turing proposed, only

a very limited set of biological patterns have been established to be based on RD Turing

instabilities[5, 6].

In chemistry, all six Turing patterns have been established in continuous systems on the

centimeter scale[7, 8], but not for diffusively coupled cells on the micron scale. Here we report

an experimental reaction-diffusion system ideally suited for testing Turing’s ideas in synthetic

“cells” consisting of microfluidically produced surfactant-stabilized emulsions[9, 10] in which

droplets containing the Belousov-Zhabotinsky (BZ) oscillatory chemical reactants[11] are

dispersed in oil. In contrast to biology, here the chemistry is understood, rate constants are

measured and interdrop coupling is purely diffusive.

The BZ reaction[11], the metal-ion-catalyzed oscillatory oxidation of an organic sub-

strate, typically malonic acid (MA), by acidic bromate, has become the prototype of non-

linear dynamics in chemistry[12] and a preferred system for exploring the behavior of cou-

pled nonlinear oscillators[13, 14]. Microfluidically produced emulsions of BZ solution are a

convenient chemical experimental system which exhibits multiple phenomena that can be

semi-quantitatively explained by Turing’s RD mechanism[15]. Microfluidic techniques pro-
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vide a convenient method for emulsifying BZ solution into monodispersed droplets with the

dimension of tens to hundreds of microns. The diffusive coupling of the chemical species

acting as activators and inhibitors between BZ aqueous droplets suspended in a continuous

oil media render the BZ emulsion system ideal for the study of synchronization and pattern

formation in networks of coupled nonlinear chemical oscillators.

Our system consists of a surfactant stabilized[16] monodisperse emulsion of drops of aque-

ous BZ solution whose size ranges from 20 µm to 200 µm diameter dispersed in a continuous

phase of oil[9, 10]. The drops are surfactant-stabilized to prevent coalescence[16]. Chemi-

cal coupling between drops is mediated through a small subset of less polar intermediates:

an inhibitory component, bromine (Br2), and two excitatory components, bromine dioxide

radical (BrO•2) and bromous acid (HBrO2), which diffuse from drop to drop through the

intervening oil[17]. Because the inhibitory bromine strongly partitions into the oil, whereas

the excitatory bromous acid does so only weakly, we satisfy the long-range inhibition and

short-range excitation condition needed for the stationary Turing state[18]. Since the system

is closed and the BZ reactants are not replenished, the reaction lasts about 100 oscillations

until the final uniform equilibrium state is approached. However, the system evolves suf-

ficiently slowly that the system can adiabatically adopt the dynamical states predicted by

Turing for open systems[19, 9, 10].

In the next chapter, we will first introduce our experimental and computational meth-

ods used in the rest of this thesis. Then we will describe in detail the studies about one-

dimensional (1D) BZ oscillators in Chapter 3.

For samples composed of many drops and in the absence of well defined initial conditions,

the anti-phase attractor, in which adjacent droplets oscillate 180° out of phase, is observed

for relatively weak coupling in 1D arrays. The initial transients in the phase difference be-

tween neighboring droplets persist until the BZ reactants are exhausted. In order to make

quantitative comparison with theory for limited oscillations in closed systems, we use photo-
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sensitive Ru(bipy)2+
3 -catalyzed BZ droplets and set both boundary and initial conditions of

arrays of small numbers of oscillating BZ droplets with a programmable illumination source.

In these small collections of droplets, transient patterns decay rapidly and we observe sev-

eral more complex attractors, including ones in which some adjacent droplets are in-phase.

Excellent agreement between experiment and numerical simulations is achieved.

In closed system, the malonic acid concentration decreases as the reaction proceeds.

Starting with a low initial malonic acid concentration, we observe a series of attractors as

a function of time in the following order: anti-phase attractors; in-phase attractors, which

evolve into traveling waves; and mixed modes that contain either regions of in-phase droplets

separated by anti-phase oscillators, or in-phase oscillators combined with non-oscillatory

droplets. Most of the observations are consistent with numerical models of the BZ reaction

in which components that participate in the excitatory (bromine dioxide and bromous acid)

and inhibitory (bromine) pathways diffuse between the droplets. Three kinds of models

(point model, phase model and finite element model) are used to quantitatively assess the

inter-drop coupling strength as a function of drop separation, drop size and malonic acid

concentration.

In Chapter 4, we will demonstrate the results for two-dimensional (2D) patterns and

Turing morphogenesis. We summarize all the 1D and 2D results into one phase diagram with

Turing linear stability analysis and nonlinear simulation side by side. Further, we examine

2D arrays of drops in more detail through experiments and finite element simulations. We

describe the transition from oscillatory to stationary chemical states with increasing coupling

strength, as well as the trend that the ratio of stationary oxidized to stationary reduced

drops increases with coupling strength. We will also provide simulation results to quantify

the degree of chemical heterogeneity of BZ drops sufficient to generate mixed oscillatory and

stationary patterns in this chapter. Last but not least, we will demonstrate the evidence of

Turing morphogenesis.
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Chapter 2

Experimental & Computational

Methods

There is much pleasure to be gained

from useless knowledge.

Bertrand Russell

In this chapter, we summarize some of the experimental and computational techniques

used in our BZ oscillator studies. Some of the data that are briefly mentioned here as

examples will be explained more thoroughly in the following chapters.

2.1 Experimental Methods

2.1.1 Chemical Preparation

Our BZ solution in droplets is usually composed of six components (supplied by Sigma-

Aldrich): sulfuric acid (H2SO4), malonic acid (MA, CH2(COOH)2), sodium bromide (NaBr),

sodium bromate(NaBrO3), ferroin redox indicator (1, 10 - Phenanthroline iron(II) sulfate

complex, [Fe(C12H8N2)3]SO4), and Ru(bipy)3 (Ruthenium - tris (2,2’- bipyridyl) dichloride,
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C30H24Cl2N6Ru · 6H2O). We normally write reduced form of ferroin (the useful part with-

out counterion) as Fe(phen)2+
3 or Fe(II), oxidized form Fe(phen)3+

3 or Fe(III); and we write

reduced form of Ru(bipy)3 as Ru(bipy)2+
3 or Ru(II), oxidized form Ru(bipy)3+

3 or Ru(III).

Most of these chemicals can be stored at room temperature in glass bottles, except that

Ru(bipy)3 is light sensitive and should be covered with aluminum foil to avoid light.

The oil separating aqueous BZ droplets is a fluorinated oil HFE 7500 (3 - ethoxy -

1,1,1,2,3,4,4,5,5,6,6,6 - dodecafluoro - 2 - trifluoromethyl - hexane, 3M Corp., St. Paul, MN,

USA). We add a surfactant “EA” (2% v/v) to prevent the coalescence of the BZ droplets.

EA (RainDance Technologies, Lexington, MA, USA) is a fluorinated surfactant consisting

of a PEG - PFPE amphiphilic block copolymer. The choice of surfactant is crucial as

bromine oxidizes double bonds. Therefore surfactants with unsaturated alkyl tails, such as

Span80, are unsuitable because they consume the available bromine, thereby preventing BZ

oscillation[19]. We note that a very satisfactory alternative is now commercially available

(RAN Biotechnologies, Inc.).

A typical recipe of BZ mixture in a droplet is listed here as the “default condition” in the

unit of M (molar, mol/L): [H2SO4] = 0.08 M = 80 mM, [MA] = 0.4 M = 400 mM, [NaBr] =

0.01 M = 10 mM, [NaBrO3] = 0.3 M = 300 mM, [Ferroin] = 3 mM, [Ru(bipy)3] = 0.4 mM,

both in reduced form. This default condition will be frequently mentioned in the rest of the

thesis. However, sometimes we also changed some of the concentrations in our experiments

such as lower or higher [MA], with or without NaBr, with or without Ru(bipy)3, etc. We

will specify these changes like “default condition with 60 mM [MA]”, “default condition

without NaBr”, “default condition without Ru(bipy)3”, etc. The unspecified species would

be the same as default condition, so that the chemical conditions would be clear without

redundancy.
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2.1.2 Microfluidics: Droplet Generator

To generate chemically and physically uniform BZ droplets of some 1 nL in volume, we use

poly - dimethyl - siloxane (PDMS) based microfluidic device (sometimes referred as PDMS

chip or microfluidic chip). The concept of our chip design is sketched in Fig. 2.1.

Figure 2.1: Schematic drawing of the microfluidic PDMS drop generator. At left, two
different aqueous streams containing complementary reactants of the BZ solution are injected
into the drop generator (light blue and red). The streams merge and co-flow down a central
channel, meeting two perpendicular oil flows that generate BZ droplets in a nozzle. The
co-flow of the BZ solution is preserved immediately after the drops are formed, but complete
mixing takes place in less than 1 s. A glass capillary (100 µm ID) was inserted in the PDMS
chip a few millimetres downstream from the nozzle to collect the BZ droplets. Adapted from
previous work[10].

This chip has two inlets for injecting equal amounts of complementary components of

the aqueous BZ solution into a central channel, where the two BZ reactant streams merge

and form a co-flow without mixing. All chemicals are injected at six times the final desired

concentration in the BZ droplets as we used equal volume from each of the six species. After

merging, the BZ co-flow encounters two streams of fluorinated oil entering perpendicularly

from both sides. The oil and BZ streams are immiscible and flow into a 50 µm nozzle,

which produces droplets by flow-focusing[20, 21]. After their formation, the droplets enter

a hydrophobized glass capillary of 100 µm internal diameter (I.D.) previously inserted into
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the microfluidic chip and we have a system of one-dimensional (1D) diffusively coupled BZ

oscillators if the drops are larger than the capillary I.D. (droplets larger than the capillary

diameter distort into spherocylinders). The experiments cannot be conducted in PDMS

devices because bromine is soluble in PDMS, which allows so much bromine to leave the

drops that the oscillations cease. The outlet channel of the PDMS chip has a width of 150 µm

and height of 40 µm to ensure a snug fit for the glass capillary, which has an outer diameter of

170 µm. The capillaries are hydrophobized using a vacuum chamber in which the capillaries

and a small amount of liquid (tridecafluoro - 1,1,2,2 - tetrahydrooctyl) trichlorosilane are

placed. We reduce the pressure in order to evaporate the silane, which enters the capillaries

via diffusion. The trichlorosilane group of this molecule reacts with the oxygen groups of the

silica on the internal glass surface, covering the surface with hydrophobic fluorinated carbon

tails[22]. After two hours in the vacuum chamber, which is sufficient for hydrophobizing the

capillaries, we remove the capillaries. Air stops the reaction, because oxygen reacts with the

chlorosilane groups.

More Details and Personal Experience

Sometimes we treat newly made PDMS chips with Aquapel (Aquapel Glass Treatment,

Pittsburgh Glass Works LLC, Pittsburgh, PA) to increase the hydrophobicity of the PDMS

channel and thereby improve the performance of the chip.

It is important to monitor the co-flow and only collect emulsions during conditions when

the flow is stable. We place both catalysts in the same co-flow, thereby generating one

colored stream and one clear stream, making it simple to visualize the steady state flow that

is necessary to ensure that all drops have identical chemical compositions.

The total flow rate is typically about 1000 µL/hr (for example, 300 µL/hr for both BZ

channels and 400 µL/hr for the oil channel). The size of BZ droplets mainly depend on the

nozzle size in the design. But changing flow rate can also change the drop size to a certain
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degree: inceasing total flow rate and increasing oil/BZ flow rate ratio will decrease the drop

size; decreasing total flow rate and decreasing oil/BZ flow rate ratio will increase the drop

size.

2.1.3 Optics: Programmable Illumination

Capillaries containing identical, equidistant BZ droplets were sealed on both ends with com-

mercial epoxy (Quick-Cure 5min epoxy, Bob Smith Ind.) on a microscope slide and observed

with a CCD camera through a homemade microscope with Köhler illumination[23]. We ob-

serve droplets placed in the central part of the capillary, at least 15 droplets away from the

epoxy seal. Typically, more than 100 drops are contained in each capillary.

Exposure of the Ru(bipy)3 catalyzed BZ reaction solution to 450 nm (blue) light triggers

the photochemical production of bromide[24, 25], inhibiting the BZ oscillations and forcing

ferroin into its reduced state. This phenomenon offers a strategy to externally control and/or

drive the droplet state in a programmable way. To accomplish this goal, we built the exper-

imental setup shown in Fig. 2.2, similar to those employed for maskless photolithography

purposes[26, 27, 28].

Lenses L1 and L2 (f1 = f2 = 30 mm) form a Köhler illumination optical path. Ferroin,

the catalyst, which also serves as an indicator for the oscillation, has an absorption peak

near 510 nm[29]. We accordingly use a cyan LED [Lumiled, LXML-PE01-0050] as a light

source for observation and an interference filter centered at 515 nm to narrow the incident

wavelength. Therefore the reduced state of ferroin, which is dark red, appears dark in the

black and white camera due to absorbance of the transmitted light and the oxidized state

(blue) is bright.

The projector arm consists of a LCD computer projector (NEC VT800), which uses three

0.63” LCDs of 1024 x 768 pixels resolution to display color images. Lens L3, a continuous

variable zoom lens with a focal distance range of f = 18.9 to 22.7 mm forms a 4x reduced

10



Figure 2.2: Schematic drawing of programmable illumination. Optical path for pro-
grammable illumination and optical microscope using transmitted light. A consumer elec-
tronics computer projector was modified to project an image onto the capillaries containing
the BZ micro-droplets. Programs, such as Microsoft PowerPoint, were used to create pat-
terned illumination. Photograph: section of a capillary of 100 µm diameter showing 9 BZ
drops. The outermost lines of light, labeled “boundary”, remain illuminated for the duration
of the experiment, suppressing oscillations and thereby isolating the five drops between the
light induced boundaries from the rest of the drops in the capillary. To establish initial
conditions, the five isolated drops are exposed to light for one oscillation period and another
two drops receive additional illumination, labeled “initial condition”, to phase shift these
two with respect to the other drops. Adapted from previous work[10].
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image of the computer projector LCD. For this particular computer projector, we were able

to remove the manufacturer’s projector lens and remount it with its direction reversed so

that instead of magnifying the image located on the three LCDs, the lens (L3) reduces the

image. Lens L4 (a discarded 35mm film Minolta photographic lens, f = 50 mm) and the

microscope objective (Olympus 4X, RMS4X, f = 45mm) together form an infinite conjugate

lens pair through the beam-splitter [Chroma 21000 50/50]. The pair transfers the LCD

image formed by L3 onto the sample plane with roughly a 1:1 magnification. The tube lens

of the objective, lens L5 (Olympus, f = 180 mm), and the microscope objective form another

infinite conjugate pair lens that transfers the sample image onto the CCD sensor.

The contrast ratio between “on” and “off” pixels in these LCD computer projectors is

about 180:1. A more significant problem is leakage of light through the projector in the

off state. In some circumstances this leakage light can influence the experiments, in which

case we insert a neutral density filter to lower this background light enough so that it does

not affect the period of the BZ oscillations, but still allows enough transmitted light so that

when the projector is on there is sufficient light to suppress the BZ oscillation. Typically, to

illuminate the samples we use 90 µW intensity of 510 nm wavelength light integrated over

the field of view of approximately 8 mm2. The computer projector has three colors; RGB,

each with 8 bits of intensity. To synchronize the BZ reaction we set the R and G values

to zero and use B only, because that is the color for which the Ru(bipy)3 is most sensitive.

When the blue is fully turned on (B = 255), the intensity over the entire 8 mm2 area is 3.6

mW. When the blue is turned off (B = 0), light leaks through the LCDs giving an integrated

intensity of 20 µW. To synchronize drops, we use patterned illumination with B = 150.

This approach allows us to perform spatio - temporal manipulation of the BZ reaction

with a spatial resolution of a single drop and a time resolution of 1 s. In order to minimize

the effect on neighboring drops, the intensity of the light is set at the minimal level necessary

to suppress oscillation in the illuminated drops. In this way, a localized light pulse on a par-
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ticular droplet of interest suppresses its oscillation for the duration of illumination, thereby

allowing the phase of the oscillator to be set photochemically. This programmable illumi-

nation permits the initial phase of each member of a chosen set of droplets to be arbitrarily

specified. As described in more detail below, droplets held by constant illumination in the

reduced state of the catalyst can act to establish constant chemical boundary conditions in

a 1D array, so with the use of a programmable computer projector we are able to control

both the boundary and initial conditions of a set of coupled nonlinear chemical oscillators.

Our setup allows the simultaneous spatial and temporal illumination of up to 30 droplets

individually in a 100 µm capillary.

We can image up to 100 droplets (in a linear array) with a different lower magnification

setup, but are no longer able to independently illuminate individual droplets. When we

study 100 droplets we illuminate the entire capillary with uniform, bright light in order to

set all the drops in-phase.

2.1.4 Data Analysis

From digital images captured at constant rate (normally 2 - 5 s per frame) we extract a

single row of pixels from each frame along the center of the cylindrical capillary. So each row

of pixels represents the full spatial information of the system (i.e. brightness of all droplets)

for that moment. We then accumulate these rows of pixels in the natural temporal sequence

to build the experimental space-time plots as shown in Fig. 2.3. In the space-time plot, each

thin white line parallel to the space axis in each BZ droplet corresponds to oxidation of the

catalyst ferroin from Fe(II) to Fe(III), which occurs in each cycle of this redox oscillation.

The dark regions between the narrow white lines in time axis correspond to intervals during

which the catalyst is at reduced form. The period of BZ oscillation in one droplet is the

shortest time this drop spend to repeat a previous status. The thin white lines in the space

time plot provided a convenient method for defining the periods, and further more, the phase
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of each droplet at any time. The percent of time (within one period) the catalyst spends

in oxidized state is called the duty cycle. We will discuss in more detail later on about the

duty cycle and how it depends on chemical conditions.

Figure 2.3: An example image of a capillary of close packed BZ droplets and its space-time
plot.

2.2 Computational Methods

2.2.1 Chemical Mechanism of Oscillation

FKN mechanism

Field, Körös and Noyes presented a series of fundamental works in the 70’s demonstrating

a detailed mechanism of the BZ oscillation[30, 31, 32], later known as the FKN mecha-

nism. All of our simulations are essentially based on this mechanism, sometimes with minor

variances[33, 34]. We will briefly introduce the FKN mechanism here.
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We can treat the complete BZ cycle as the result of three processes. In process A, there

is sufficient bromide ion in an acid solution of bromate and malonic acid. The sequence (2.1)

+ (2.2) + 3(2.3) + 3(2.4) results in net process A (2.5).

Process A:

BrO−3 + Br− + 2H+ k2−→ HBrO2 + HOBr (2.1)

HBrO2 + Br− + H+ k1−→ 2HOBr (2.2)

HOBr + Br− + H+ k5−⇀↽−
k6

Br2 + H2O (2.3)

Br2 + CH2(COOH)2
k7−→ BrCH(COOH)2 + Br− + H+ (2.4)

Net process A:

BrO−3 + 2Br− + 3CH2(COOH)2 + 3H+ −→ 3BrCH(COOH)2 + 3H2O (2.5)

When bromide ion is virtually absent, bromate ion reacts with the catalyst (Ce(III) in

the original paper[30], Fe(II) in our case) and malonic acid. The sequence 2(2.6) + 4(2.7) +

(2.8) + (2.9) results in the net process B (2.10). And the sequence (2.6) + 2(2.7) leads to

autocatalytic production of HBrO2.

Process B:

BrO−3 + HBrO2 + H+ k4−⇀↽−
kr

2BrO2·+ H2O (2.6)

BrO2 ·+Fe(phen)2+
3 + H+ kred−−→ HBrO2 + Fe(phen)3+

3 (2.7)

2HBrO2
k3−→ BrO−3 + HOBr + H+ (2.8)

HOBr + CH2(COOH)2
k8−→ BrCH(COOH)2 + H2O (2.9)
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Net process B:

BrO−3 + 4Fe(phen)2+
3 + CH2(COOH)2 + 5H+ −→

BrCH(COOH)2 + 4Fe(phen)3+
3 + 3H2O

(2.10)

The irreversible processes A and B will take place under different conditions in the same

system and a solution reacting by process A will eventually convert itself to one reacting by

process B. To have oscillation, however, we need to get back from B to A. This is accomplished

by Fe(III) produced in process B reacting with the organic species by overall processes (2.11)

and, more importantly (2.12). When the rate of (2.12) becomes sufficiently great, process B

is “turned off” and process A is re-initiated, so that the oscillatory cycle and begin again.

The net process C is the result of the sequence x(2.5) + (3 − x)(2.10) + (2 − 2x)(2.11) +

2x(2.12) where x ∈ [0, 1].

Process C:

6Fe(phen)3+
3 + CH2(COOH)2 + 2H2O

k10−→
6Fe(phen)2+

3 + HCOOH + 2CO2 + 6H+
(2.11)

4Fe(phen)3+
3 + BrCH(COOH)2 + 2H2O

k9−→
Br− + 4Fe(phen)2+

3 + HCOOH + 2CO2 + 5H+
(2.12)

Net process C:

3BrO−3 + 5CH2(COOH)2 + 3H+ −→
3BrCH(COOH)2 + 2HCOOH + 4CO2 + 5H2O

(2.13)

Reactions with Light

To have light control of BZ oscillation we need to use Ru(bipy)3. In principle we can use

Ru(bipy)3 only. However, to have better contrast in the space time plot, we also use ferroin
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as previously mentioned in the default condition which is using 3 mM ferroin and 0.4 mM

Ru(bipy)3. The photosensitive reactions involving Ru(II) complex (i.e. Ru(bipy)2+
3 ) are

listed here[33].

Ru(bipy)2+
3 + hν

kI−→ Ru(bipy)2+
3 ∗ (2.14)

Ru(bipy)2+
3 ∗+ BrCH(COOH)2 + H+ kC−→ Ru(bipy)3+

3 + Br− + products (2.15)

Ru(bipy)2+
3 ∗

kd−→ Ru(bipy)2+
3 (2.16)

Differential Equations for Reaction

I summarized the constant and variable chemical species and the reaction rates for the full

FKN model in the following table 2.1. With the variables and constants defined in this table,

we have the set of ordinary differential Eqs. 2.17 to 2.23 derived from reactions 2.1 to 2.16.

For light control reactions, kI = 10−3 ∼ 10−4 s−1, bC = kd/kC = 0.05 M. While we

use two catalysts Fe(phen)3 and Ru(bipy)3 in our experiments, in simulation we disregard

this distinction and consider only one photosensitive catalyst represented by c/z in its re-

duced/oxidized form.
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concentration constant reaction rate value

[H+] h k1 2× 106 [M−2s−1]h

[BrO−3 ] A k2 2 [M−3s−1]h2A

[CH2(COOH)2] m k3 3000 [M−1s−1]

[BrCH(COOH)2] B(= 0.1m) k4 42 [M−2s−1]hA

concentration variable k5 5× 109 [M−2s−1]h

[HBrO2] x k6 10 [s−1]

[Br−] y k7 29 [M−1s−1]m

[HOBr] p k8 9.3 [M−1s−1]m

[BrO2·]BZ / [BrO2·]Oil w / r k9 0.07 ∼ 0.12 [M−1s−1]m

[Br2]BZ / [Br2]Oil u / s k10 0.05 [M−1s−1]m

[Fe(phen)2+
3 ] c kr 2× 108 [M−1s−1]

[Fe(phen)3+
3 ] z kred 5× 106 [M−1s−1]

Table 2.1: Summary of chemical concentrations and reaction rates.

dx

dt
= −k1xy + k2y − 2k3x

2 − k4x+ krw
2 + kredwc (2.17)

dy

dt
= −k1xy − k2y − k5yp+ k6u+ k7u+ k9z +

kIcB

bC +B
(2.18)

dz

dt
= kredwc− k9z − k10z +

kIcB

bC +B
(2.19)

dp

dt
= 2k1xy + k2y + k3x

2 − k5yp+ k6u− k8p (2.20)

du

dt
= k5yp− k6u− k7u (2.21)

dw

dt
= 2k4x− 2krw

2 − kredwc (2.22)

dc

dt
= −kredwc+ k9z + k10z −

kIcB

bC +B
(2.23)
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2.2.2 Point Oscillator Model

Now that we have a understanding about the reaction, let us have a look at diffusion. Fig.

2.4 draws a simple vision of bromine diffusion through the oil gap between two BZ drops

oscillating alternatively. The figure is showing the moment that left drop is at the oxidized

status of the redox (R/O) cycle, releasing bromine, which is a product of BZ oscillation,

to the right drop, and therefore suppressing the right drop to reduced state. The right

drop later on will do the same to the left, so that the two drops are coupled by bromine

inhibition, naturally leading to a 180° anti-phase oscillation. The red/blue color represent

the reduced/oxidized state of ferroin. The concentration profile [Fe(III)] as a function of

time for both of the drops is shown at the lower half of the figure. Dashed line and solid line

are used to distinguish the two drops.

Figure 2.4: Schematic drawing of two BZ droplets diffusively coupled to each other. Adapted
from previous work[10].

To quantitatively model the diffusion, we established a point model as shown in Fig. 2.5.
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There are four subfigures here arranged in the same order of simplifying the geometry and

building the point model: a) The camera image of a small portion of a capillary where we can

see two BZ droplets (∼ 200 µm wide) separated by a oil gap (∼ 80 µm wide). b) Ignoring the

curvature of water/oil interphase, we simplify the experimental scenario to a 2D box of oil

containing two BZ rectangles, BZ1 and BZ2. We define the maximum width of the BZ droplet

(i.e. the width at the center) to be the width of BZ1 and BZ2, namely a; and the center

width of the oil gap to be b. Box BZ1 and BZ2 are assumed to have the same width a, which

is based on the fact the microfluidic generated droplets are highly identical - the diameters

varied by less than 2%. For this rectangular geometry the height of BZ and oil cells (which is

the same) is somewhat irrelevant as the variances only happen along the capillary. Therefore

this 2D rectangular model is essentially a 1D model. c) Assuming the bromine concentrations

in BZ1, BZ2 and the oil in between are spatially linear, as demonstrated by the solid red

lines. Partition coefficient is the ratio of concentrations of a chemical in a mixture of two

immiscible phases at equilibrium. The partition coefficient of bromine at BZ/oil interphase,

[Br2]oil*/[Br2]BZ*, is about 2. So at equilibrium, [Br2] at the right boundary of BZ1 is about

half of that at the left boundary of oil. Similarly [Br2] at the right boundary of oil is twice

of that at the left boundary of BZ2. However, we want to simplify this model even more,

that is to assume the concentration in each cell is uniform, as the dashed red lines. On one

hand, this further simplification is justified by the fact that the droplets are very small so

that gradient within a drop can be ignored. On the other hand, a uniform concentration in

oil cannot satisfy the boundary partition coefficient on both sides of oil simultaneously when

[Br2] in BZ1 is different from that in BZ2. We will see in the next chapter that despite these

flaws and approximations, this model works fairly well comparing to experimental results.

d) Now that [Br2] in each cell can be represented by its center concentration, we can think

of the cells as points at the center with the same concentration. Diffusive fluxes J1 from BZ1

to oil, J2 from oil to BZ2 are caused by the concentration gradient from point to point, yet
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the points are separated by the center-to-center distance, (a+ b)/2.

OilBZ1 BZ2

[B
r 2
]

a b

a

b

ca

d
BZ1

Point
Model:

BZ2Oil

J1 J2

Figure 2.5: Illustration for point model

The mathematical form we derived for the point model is based on Fick’s law of diffusion

and mass conservation. The bromine flux between oil and BZ drop according to Fick’s first

law is as follows:

J = −D∂u
∂x

≈ −D∆u

∆x

= D

[
s− uPU

(a+ b)/2

]
(2.24)
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where D is the diffusion coefficient of bromine molecule, PU is partition coefficient of bromine.

We assume the diffusion coefficient is the same for all species in oil and water. Flux by

definition can also be written as:

J =
∆N

∆tA

=
∆uVdrop

∆tA

=
∆ua

∆t
(2.25)

where Vdrop is the volume of a BZ droplet which equals the cross section area of the capillary

A times the width of the drop a. With Eqs. 2.24 and 2.25, we have:

∆u

∆t
=
J

a
= 2D

[
s− uPU

a(a+ b)

]
(2.26)

Finally we can combine reaction and diffusion together and solve the full dynamics of

the system. To do so, we only need to add the diffusion parts into the Eqs. 2.17 to 2.23

where diffusion through oil phase is allowed. For example, there will not be any change of

Eq. 2.18 as bromide ion cannot diffuse into oil phase, in other words, PY = 0. For species

that is non-polar or weakly polar, such as bromine, we have the reaction diffusion equation

as:

dun
dt

= k5ynpn − k6un − k7un + 2D

[
sn−1 + sn − 2PUun

a(a+ b)

]
(2.27)

dsn
dt

= 2D

[
PU(un + un+1)− 2sn

b(a+ b)

]
(2.28)

where the subscript n is the drop index and sn is the bromine concentration in the oil gap

right to the BZ drop where un is defined. The partition coefficient of bromine, PU = 2.5,

is a precisely measured value. However, bromine is not the only species can diffuse through

oil. Bromous acid HBrO2 and radical BrO2· are also expected to diffuse into oil phase, with
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estimated partition coefficients PX = 0.05 ∼ 0.1 and PW ≈ 1. There is even experimental

evidence suggesting that malonic acid can also diffuse into oil, which is not accounted for in

our current model. We will talk about more about this in the following chapter.

The actual ODE solver we use for the point model is “ode15s” in MATLAB® (version

R2011a). ode15s is a variable-order solver for stiff problems with low to medium accuracy

(best available). For solver error control, we set the relative tolerance RelTol = 1e− 8 and

the absolute tolerance AbsTol = 1e− 9 for most cases. The time step is set to be 1 second

for ode15s for most cases.

We also developed another version of point model without defining the oil segments

between drops explicitly, which ignores the chemical accumulation in oil. Using the same

Fick’s law derivations we have the expression,

dun
dt

= k5ynpn − k6un − k7un + 2DPU

[
un−1 + un+1 − 2un

ab

]
. (2.29)

This alternative expression of flux, with the addition of the Derjaguin approximation con-

sidering the actual curvature of the drops[15], is only used in the point model simulations in

Chapter 4.

2.2.3 Finite Element Analysis

Although the point model works well for 1D system, the disadvantage of the uniform concen-

tration approximation becomes more obvious in 2D system where droplets are close packed

in a hexagonal lattice. Even in 1D, we need to examine how good the approximation is, not

only comparing to experimental results, but also to more accurate numerical simulations.

The diffusion part of our system, without approximation, should be in the form of Fick’s
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second law,


∂u

∂t
= D

∂2u

∂x2
1D

∂u

∂t
= D∇2u 2D or more

(2.30)

We can see that the assumption of uniform concentration (treating each drop as one point)

cannot give us a satisfactory solution to the second order PDE 2.30. We need to at least

segment each cell to 3 pieces; and the more pieces we segment each cell, the more precise

spatial concentration solution we can get. It is analogous to the idea that connecting many

tiny straight lines can approximate a large circle, the shorter the straight lines are, the

smoother the circle is. This leads to the finite element method (FEM). An example of

FEM simulated result of two BZ droplets in a 2D oil box created in software COMSOL

multiphysics® is shown in Fig. 2.6. The basic geometry is a 2D rectangle containing two

circles, representing one oil box containing two BZ droplets (a = 200 µm, b = 20 µm). This

geometry is meshed into many small triangles and at each node of the mesh the spatial

derivatives from the PDE are eliminated (automatically in COMSOL), thus approximating

the PDE locally with a set of ODEs for transient problems such as ours. The bromine profile

for the whole geometry at this moment is shown in rainbow color, where red is high [Br2]

and blue is low [Br2]. This is the same moment as in Fig. 2.4 and with COMSOL we can

quantitatively visualize the bromine flux (black arrows) from one drop to the other. If we

extract this profile through the two centers of BZ drops and plot the [Br2] profile of the

two drops and oil gap in between, as shown in solid blue curves in the lower half plot, we

can see that our previous assumption of uniform or linear concentration is, as we expected,

not very good. But the high accuracy spatial profile of FEM comes with a price, that is

computational efforts. So most of our 1D simulation were studied in the point model, which

allowed us efficiently increase the number of trials and the number of droplets for better
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statistics.

Figure 2.6: Example of FEM modeling

2.2.4 Phase Model

We would like to further simplify the seven-variable FKN mechanism. There has been

simplifications such as Oregonator[32] and Vanag-Epstein model[34] that reduce the number

of variable chemical species down to three or four. But can we reduce it down to only one
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variable? To answer this question, let us first look at the reaction diffusion Eq. 2.31 for an

unstirred beaker of BZ mixture solution.

Ẋ = F(X ) + D∇2X , (2.31)

where X is a vector containing the seven variable chemical concentrations x, y, z, etc., F

is a vector function describing the chemical kinetics of each species, and D is a matrix of

diffusion constants. This equation can also be applied to one BZ microdroplet. If we have

two BZ droplets diffusively coupled to each other, then reaction diffusion equation of the

two drop system becomes Eq. 2.32.

{
Ẋ1 = F(X1) + M (X2 − X1)

Ẋ2 = F(X2) + M (X1 − X2)
(2.32)

Here M is a diagonal matrix containing the constants of diffusive transport of each species

from drop to drop, while the diffusion inside each drop is ignored due to the nL scale volume.

It is assumed that the oscillators, if uncoupled, are the same in nature (F ). If the drops are

weakly coupled, which requires the diffusion terms are small compared to the reaction terms

in Eq. 2.32, we can then simplify the cycle in 7-dimensional chemical space to a 1D phase

space.

Fig. 2.7 illustrates how is phase defined in our system. We pick the moment when z

reaches maximum as the beginning of phase, θ = 0. This is convenient because it is also the

moment that the drop becomes oxidized and gives highest brightness in the space time plot.

The concentration profiles of x, y, and z as a function of time in Fig. 2.7 start from θ = 0;

at this moment z reaches its maximum, x has just pasted its maximum and y is going to

its maximum. After one period T , z reaches its maximum again, x and y also come back to

the same status one period ago, and now θ = 1. Similarly after another period, θ = 2, and

so on. In other words, phase is linearly defined in time. We use unit 1 for phase, which is
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equivalent as using 2π.

To visualize the mapping between chemical space and phase space, we plotted the limit

cycle (closed trajectory) in x-z plane in Fig. 2.8 (blue curve with circle marker). The circle

markers are evenly spaced in time (i.e., phase) by 0.1 second. The markers are more closely

spaced at low x than at high x, which means the BZ drop spends most of a period at low

x. We can also see this in the time profile of x in Fig. 2.7, that only a small fraction in one

period x is high, while during most of the period x is almost zero. The actual limit cycle

for the 7-variable FKN model is a loop in 7-D chemical space, but we can only visualize two

or three at best. By mapping this complicated oscillation trajectory in 7-D chemical space

onto a simple 1D phase space, we have a great advantage of simplicity and more importantly,

universality, which allows us to apply what we learnt from BZ oscillators to more complicated

biological oscillators such as neurons.

Yoshiki Kuramoto proposed a mathematical model in the 70’s to describe synchronization

of coupled oscillators[35, 36]. The most popular form of the model is Eq. 2.33:

dθi
dt

= ωi +
K

N

n∑
j=1

sin(θj − θi) (2.33)

where θ is the phase of each limit cycle oscillator, ω is the natural frequency of each oscillator,

N is the number of oscillators, and K is the coupling constant. This model makes three

assumptions about the oscillators and the coupling: 1) all-to-all, weak coupling; 2) nearly

identical oscillators; 3) interactions that depend sinusoidally on the phase difference between

two oscillators. There has been study[37] that modifies Kuramoto’s model to local coupling,

successfully explaining the qualitative behaviors of entrainment and synchronization in BZ

droplets. However, if we want better quantitative understanding, a more specific coupling

function is needed to replace the sinusoidal function in Kuramoto’s phase model. We define

our coupling function H as illustrated in Fig. 2.9.
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Figure 2.7: Definition of phase. Concentration profiles are from one of the two coupled BZ
droplets simulated with 7-variable FKN model in point oscillator method, but only x, y, z
are shown here.
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Figure 2.8: Limit cycle in x-z plane
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(d)

(a)

(b)

(c)

Figure 2.9: H coupling function
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We will revisit this subject in section 3.2.2 of the next chapter and discuss in detail about

phase response curve and H function.
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Chapter 3

One-Dimensional Chemical Oscillators

The whole problem with the world is

that fools and fanatics are always so

certain of themselves, but wiser people

so full of doubts.

Bertrand Russell

Active matter refers to materials composed of self-propelled agents which continuously

consume energy to generate collective motion[38, 39, 40]. The field of active matter is young

and dominated by theory; lack of model experimental systems that can easily be reproduced

and studied by many groups has hampered progress. Developing robust experimental active

matter systems is challenging because of the tendency for irreversible processes to degrade

the active agents and prevent them from functioning. Biological active matter (e.g., flocks,

cytoskeleton) works reliably in vivo because of extensive repair mechanisms, which have not

been replicated in vitro. We present here the first steps towards development of a chemically

based active matter experimental system, active emulsions. Collective motion requires two

attributes from the active agents: communication and motion. Here we focus solely on the

development of communication in active emulsions, leaving the challenge of self-propulsion
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for the future.

Synchronization of a large number of elementary units plays a key role in the function-

ing of many complex biological and social systems. Examples include quorum sensing in

bacteria[41], ciliary fields[42, 43], cardiac muscle contraction[44], neural activity and insect

behavior[45]. Driven entrainment has often been used to induce and to modulate synchro-

nization dynamics[46, 47, 48]. As an example of coupled non-linear chemical oscillators, the

Belouzov-Zhabotinsky (BZ) reaction, the metal-ion-catalyzed oscillatory oxidation of an or-

ganic substrate, most commonly malonic acid (MA), by bromate, has become the prototype

of nonlinear dynamics in chemistry and a preferred system for exploring the dynamics of

coupled nonlinear oscillators[7]. Micron-sized beads have been employed as BZ reactors, and

several strategies have been devised to achieve coupling between these oscillators[49, 50, 51].

In these examples, coupling among the oscillators occurs via all chemical species; here we

restrict the subset of coupling species, in order to promote inhibitory coupling. A problem

of particular interest is to determine the attractor(s), i.e., the stable dynamical state(s) to

which a system of interacting oscillators spontaneously evolves.

Here we study a linear array of discrete, coupled, nonlinear chemical oscillators com-

posed of emulsions of aqueous BZ droplets in oil stored in a capillary in order to form a

one-dimensional (1D) array. As demonstrated previously[19, 9], a small subset of the BZ

chemicals, an inhibitory component, bromine (Br2), and an excitatory component, bromine

dioxide radical (BrO2·), diffuse from drop to drop through the intervening oil, thereby pro-

ducing a chemical coupling between drops. Bromine brominates malonic acid, generating

bromide and thereby inhibiting the excitatory coupling and preventing the oxidation of the

catalyst [52, 30, 31]. Since bromine is the principal chemical diffusing between BZ drops,

inhibitory coupling dominates. Bromine is produced in a short interval of time during each

cycle of the oxidation transition, so each BZ drop that has just undergone an oxidation

transition emits a pulse of Br2 that acts to delay the transition of its neighboring drops
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resulting in the out-of-phase response. Since the system is closed, so that the BZ reactants

are not replenished, after at most 100 oscillations enough of the reagents are consumed so

that oscillations cease as the final equilibrium state is approached.

With the techniques introduced in chapter 2, we present the detailed results for 1D BZ

oscillators in this chapter, consisting of three following sections: 1) the experimental results,

compared with numerical simulations; 2) several methods we used to measure the coupling

strength between BZ oscillators; 3) testing Turing mechanism with our BZ drops.

3.1 Experiments and Simulations

In most of our studies of BZ oscillators, we focus on the most important few parameters

as the tunable experimental conditions. These parameters are drop size a, defined as the

longitudinal distance between the two ends of the drop in the cylindrical capillary; oil gap

size b, defined as the distance between the closest ends of two drops; and malonic acid

concentration m, carefully chosen based on previous experience[19]. Tuning these parameters

will change the strength of the diffusive coupling between drops: increasing m or increasing

a or b will weaken the coupling strength. In previous studies [19], the anti-phase attractor

was reported to be the most common pattern for emulsions of BZ droplets in oil in a 1D

configuration under conditions (m ≥ 100 mM) dominated by inhibitory coupling due to the

diffusion of the inhibitory species Br2 through the oil. This conclusion was based on the

experimental observation that addition of a bromine scavenger eliminated coupling effects

and the fact that the theoretical results were almost identical with and without inclusion

of the diffusive coupling of the excitatory species BrO2· and HBrO2 for m ≥ 100 mM. In

contrast, at low m (< 100 mM), the results indicate the increasing importance of excitatory

coupling. We will first present the results for weakly coupled (m ≥ 100 mM) oscillators,

then the stronger coupled ones (m < 100 mM).
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3.1.1 Weakly Coupled BZ Droplets

Using the “default condition” recipe defined in Chapter 2, we obtain out-of-phase inhibitory

patterns using monodispersed droplets with a ranging between 100 and 220 µm while the

droplets are uniformly spaced, with b ranging from near-contact to 130 µm. In this section

we present experiments on 1D arrays of droplets interacting along the axes of hydrophobized

capillaries with a 100 µm inner diameter. In each array of droplets, approximately 100

droplets at most can be imaged simultaneously, and beyond the field of vision there are at

least 15 more droplets on each side from the sealed end of the capillary. We will describe the

typical behavior of these systems for several different m values. An example experimental

result is shown in Fig. 3.1. The droplets in fields of view were suppressed and synchronized

for 3 ∼ 4 minutes (approximately one oscillation period) with blue light from a projector as

described in Chapter 2 and then allowed to oscillate freely without any light perturbation.

To emphasize the characteristics of this typical out of phase behavior of weakly coupled

BZ droplets, a segment of a capillary with m = 640 mM droplets array is shown in Fig. 3.2a

and the binarized, color-reversed space-time plot of this system shown in Fig. 3.2b. Light

synchronization set all the drops in-phase in the reduced state of ferroin at the beginning

of the experiment. Most drops’ first transition from the reduced to the oxidized state were

in phase, displayed as the first black line in Fig. 3.2b. Our numerical simulations reveal

that during the short oxidized portion of the oscillation the Br2 concentration in each drop

is high. At this moment in the oscillation cycle the drop is less susceptible to having its

phase shifted by the addition of Br2 diffusively transferred from a neighboring drop than

at a later time in the drop’s cycle. With time, the Br2 is removed through bromination

of malonic acid after which the oxidation transition can reoccur. Notice in Fig. 3.2b that

a few drops transition with a delay. Focus on the isolated delayed drop in the middle of

the space-time plot in Fig. 3.2b, which emits Br2 during the oxidation transition. If this

transition is sufficiently delayed, then it occurs when [Br2] in the neighboring drops has
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Figure 3.1: Typical 1D pattern without light boundary.
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Figure 3.2: 1D pattern, experiment vs. simulation with binarized space-time plots. (a)
Upper photograph shows detail of BZ droplets in a 100 µm diameter capillary. Lower photo-
graph shows a section of a capillary containing 75 BZ droplets. (b) Experiment: binarized,
intensity-inverted, spacetime plot of BZ oscillations of droplets at [MA] = 0.64 M. Space
is horizontal; time flows vertically from top to bottom. Each black bar corresponds to the
oxidized state of a single drop; white regions correspond to the reduced state. At t = 0
(not shown), all droplets are synchronized in the reduced state using external light forcing.
An arbitrary reference oscillation is labeled “0” with every odd-indexed drop colored blue
and every even-indexed drop colored red. Simulation: spacetime plot of a simulation of 30
BZ drops separated by oil. Initial conditions are the same as in experiment (c) Binarized,
intensity-inverted, spacetime plot of BZ oscillations of 15 droplets at [MA] = 0.060 M in
the middle of a large sample. Image of the capillary containing the droplets from which the
spacetime plot is obtained is presented at the top. Adapted from previous work[10].
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reached a relatively low value, and these drops will receive a sufficient dose of Br2 from the

emitter to delay their next oxidation transition, which leads to longer periods for droplets

out of phase. In turn, these new delayed drops influence their in-phase neighbors, and the

number of in-phase drops decreases monotonically.

In Fig. 3.2b the time of an arbitrary oxidation transition on the left side of the space-

time plot is labeled “0”. We pick the leftmost drop and color in blue the oxidation transition

that occurs at time “0”. Then we label in blue the oxidized state of its second nearest

neighbor that is closest in time to its oxidation transition and in this manner continue

painting transitions of every other drop blue until we reach the right hand side of the space-

time plot. In this way we construct a “wave front” of the oxidized state. We color in red

the transition of drop that is second from the left that is closest in time to the first blue

drop and continue proceeding from left to right until each second nearest neighbor drop is

labeled red. If the drops were in an attractor where every other drop had a phase difference

of π (half a cycle) with its two nearest neighbors, then the blue and red wave fronts would

be straight and separated in time by exactly half a period.

Fig. 3.2b also shows a simulation of a capillary containing 30 drops with m = 640 mM.

In the simulation, calculated using a modified version of a previously used extension of the

FKN model[33], with a = 200 µm with a vanishing oil gap (b = 10−4 µm), to model the

experimental case of drops in contact. The outermost drop at each end is modeled to be

held at constant illumination, which prevents those drops from oscillating, effectively forming

constant concentration boundary conditions. Only the remaining 28 drops, which are not

illuminated and therefore can oscillate, are shown in the space-time plot. The simulations are

done on “open” systems in which the principal chemical reagents that feed the BZ reaction

are held constant (see appendix for details), so the reaction can oscillate forever. Initially,

three drops, the nearest neighbor to each boundary drop and one drop in the middle of the

system are set 180° out of phase with all the other drops. With each transition, the out-
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of-phase drops cause neighboring in-phase drops to delay their oxidation transition, leading

to the conversion of the initial in-phase to the out-of-phase pattern. It takes about 200

oscillations for the transients to die out and a final, stable oscillatory pattern to be reached.

In an infinite system the final state would consist of neighboring drops oscillating 180° out-

of-phase with each other, and in the space-time plot the oxidation transitions of the even

(red) and odd (blue) indexed drops would form straight lines offset by half a period. In

contrast, the final simulated steady state oscillatory pattern in Fig. 3.2b, is gently curved as

a consequence of the influence of the boundaries propagating into the center of the sample.

Later we will show that, for these conditions, samples must contain more than 40 drops

in order for boundary conditions to be negligible. Since the coupling between drops is

diffusive, the time for transients to decay grows as the square of the number of drops. The

experimental system is over three times larger than the simulated one so we predict that

it will take well over 1000 oscillations for transients to decay in an experimental system of

100 drops. Since the closed experimental system oscillates at most 100 times before the

reaction goes to completion, samples of 100 drops that are started in-phase will never reach

the steady oscillatory pattern.

Fig. 3.2c shows an experimental space-time plot of a 1D BZ droplets array with m = 60

mM. In contrast to the case of higher malonic acid, the conversion from the initial in-phase

to final out-of-phase pattern is rapid. Simulations also reflect this trend.

3.1.1.1 Boundary Condition and Initial Condition

In order to make quantitative comparison with theory, we use photosensitive BZ (Ru(bipy)2+
3

catalyzed) droplets and set both boundary and initial conditions of arrays of small numbers

of oscillating BZ droplets with a programmable illumination source. In these small collections

of droplets, transient patterns decay rapidly and we observe several more complex attractors,

including ones in which some adjacent droplets are in-phase. As described in more detail
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below, droplets held by constant illumination in the reduced state of the catalyst can act

to establish constant chemical “boundary” conditions in a 1D array, so with the use of a

programmable computer projector we are able to control both the boundary and initial

conditions of a set of coupled nonlinear chemical oscillators. Our current set-up allows the

simultaneous spatial and temporal illumination of up to 30 droplets individually in a 100

µm capillary. We can image up to 100 droplets with a different lower magnification set-up,

but are no longer able to independently illuminate individual droplets. When we study

capillaries with 100 droplets we illuminate the entire capillary with uniform, bright light in

order to set all the drops in-phase.

We controlled the light intensity on the boundary drops to be just enough to suppress

the oscillation, but not too bright so that their neighboring drops’ period get elongated. For

example, in Fig. 3.3 we demonstrate that if we use too much light on boundary drops (above

drop #1 and below drop #9), not only themselves would be stopped from oscillating, the

drops near them (drops 1, 2, 7, 8, 9) would also have longer periods compared to drops 3-6.

This is caused by the overdose of light in the boundary drops and hence extra Br− as shown

in Eq. 2.15, and therefore extra Br2 diffused into the neighbors.

Even with minimum amount of light, boundaries still affect the drops in between as

shown in Fig. 3.4. We study 40 drops and start the drops with 180° out-of-phase initial

conditions. The space-time pattern evolves without producing phase defects and the system

evolves to a steady-state oscillatory pattern after about 100 cycles. If the number of drops

is large enough, then for adjacent drops far enough away from the boundaries, ∆φ = 0.5

as shown in Fig. 3.4. The range of influence of the boundaries is a function of m. At low

m, the effect of the boundaries is less than at higher m. We obtained the same results with

two different boundary conditions; one corresponding to drops exposed to just enough light

to suppress oscillations (constant chemical boundary, Dirichlet) and one corresponding to

sealed walls at each end of the array (no flux boundary, Neumann). The interpretation of
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these results is that in the limit of large 1D arrays of BZ emulsions the attractor consists of

nearest neighbors oscillating precisely half a period out of phase.

Figure 3.3: The effect of light on boundary droplets.

3.1.1.2 Results for Small Number of Droplets

We are interested in establishing whether the system of coupled oscillators has well-defined

attractors and, if so, we would like to enumerate them and characterize their basins of

attraction. However, as seen in the previous section, there are several experimental problems

in dealing with arrays containing a large number of drops. First, the results presented above

suggest that for large droplet arrays at higher m, transients in the phase difference between

oscillators persist beyond the time for the BZ reaction to cease oscillation. Second, at high m

the coupling is weak and the system has a tendency to drift, making it difficult to set initial

conditions of the oscillators with a brief perturbation. Third, near m = 60 mM, where the

coupling appears strongest, the anti-phase attractor is very stable and the basins of attraction

of other patterns may be quite small. Finally, the approximation that m remains constant

breaks down at low m. For m < 30 mM, the BZ drops cease to oscillate after only a few
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Figure 3.4: Simulation: the effect of silent boundary droplets. Simulation of the phase
difference between 40 BZ drops of 200 µm diameter separated by gaps of 50 µm of oil for
high (400 mM) and low (60 mM) concentrations of malonic acid. The drops on the boundary
are given sufficient light to prevent oscillation; k(I) = 10−4[s−1] for high [MA] and 10−3 for
low [MA]. The insets contain spacetime plots from which the phase differences were derived.
Blue represents odd numbered drops and red even numbered drops. One oxidation transition
is shown for each of the drops. Adapted from previous work[10].
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periods and the drops enter a Turing state in which some are permanently in the oxidized

state and others in the reduced state, and often pairs of in-phase oscillators are observed.

The solution to this set of problems is to study small groups of drops at intermediate m with

well established initial and boundary conditions.

We first focus on groups of 3 - 5 droplets for m between 200 mM and 400 mM, where the

phase of the droplets can easily be shifted using external light perturbation. Typically, the

capillaries are filled with more than 100 droplets, but the droplets of interest are isolated from

the rest of the capillary by two non-oscillatory droplets, which are fixed in the reduced state

by the applied illumination, which provides symmetric boundary conditions. Additionally,

by illuminating the droplets in the group of interest with a selected spatiotemporal pattern,

we can place the system in a desired initial state, as illustrated in Fig. 2.2. We also attempt

to reproduce our experimental results with computer simulations. All simulations in this

section are done with the length of the BZ droplet, a = 200 µm, length of the oil gap,

b = 50 µm, and m = 400 mM. In this section we adopt a particular notation to describe the

phase relationship between adjacent drops, whereby the phase of a drop is indicated by a

lower case letter. For example, if we have four drops with every other drop having the same

phase, we refer to this situation as an “a-b-a-b” array. One important point is that, since

the system is closed, it necessarily drifts away from the attractor that would exist in an open

system. Thus in the experiments described below we employ simulations of open systems to

identify the underlying attractor observed in experiment.

3 drops The only pattern we found with 3 droplets is the “a-b-a” attractor, in which the

phase difference of the two outer droplets with the drop in the center is φa−φb = ∆φ ∼ 0.6,

with simplification of π = 1. This measurement is clearly distinguishable from the case

when the drops are 180° out-of-phase with ∆φ = 0.5. This pattern is reached independent

of the initial phases of the drops. As an example, Fig. 3.5a shows that an initial “a-a-b”
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pattern is unstable and eventually evolves to the stable “a-b-a” pattern. We also explored

a variety of other initial conditions, including the symmetric “a-a-a” state. Fig. 3.5b shows

the experimental phase difference ∆φ between each drop and a reference drop as a function

of time extracted from the space-time data in Fig. 3.5a. Note that the first 5 × 103 s

of the experiment are shown in the space-time plot of Fig. 3.5a, while 11 × 103 s of the

experiment are analyzed in Fig. 3.5b. The phase difference is calculated between drops that

have oscillated the same number of times. For example, even though at late times in the

space-time plot of Fig. 3.5a the first and third drop undergo nearly simultaneous oxidation

transitions (vertical white bars), drop 1 has undergone approximately one more oscillation

than drop 3 so their phase difference is nearly 1, not 0. In Figs. 3.5b, 3.5c, and 3.5f each

symbol (marker) corresponds to the occurrence of an oxidation transition, so we see that it

takes 10 oscillations for drops 1 and 3 to become synchronized. This symbol convention is

employed in Figs. 3.6 to 3.10 as well. Numbering the three droplets of interest from top to

bottom, we observe that drop 1 initially has a shorter period than drops 2 and 3 (Fig. 3.5d),

enabling it to drift out of phase with drop 2 and in phase with drop 3. Once the stable

“a-b-a” pattern is established, the initially disparate periods of the drops become identical,

though period τ drifts monotonically in time as previously described at high m (Fig. 3.5d).

Figs. 3.5c and 3.5e show simulations corresponding to Figs. 3.5b and 3.5d, respectively.

Note that, in both the experiment and the simulation, after the initial transient has died

out the observed out-of-phase attractor of the center drop has ∆φ ∼ 0.6 which differs from

the ideal anti-phase behavior (∆φ = 0.5) as a result of interactions with the boundary. The

simulations shown in Fig. 3.4 suggest that boundary effects extend about 10 drops into the

array for high m.

Since the simulations do not take into account the consumption of the reactants, once

synchrony is obtained, the oscillation period in Fig. 3.5e remains constant rather than slowly

increasing as in Fig. 3.5d. We suggest that the collective drift in the experimental period,
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beginning at t = 5000 s in Fig. 3.5d, is a consequence of the system being closed. Another

inadequacy in the model is that the calculated periods of oscillation do not quantitatively

match the experimental periods. The inability of the FKN model to accurately calculate

the period of the BZ oscillation has been discussed previously[53]. However, Fig. 3.5f shows

that experiment and simulation agree when we plot the phase difference as a function of the

non-dimensional period (i.e., the number of oscillations). Note in Fig. 3.5f that φ = 0 is

equivalent to φ = 1.

4 drops For four droplets, we are able to obtain two attractors by light manipulation:

“a-b-a′-b′” as shown in Figs. 3.6, 3.7 and 3.9 and “a-b-b-a” as shown in Fig. 3.8. In Fig.

3.6, an initially synchronized in-phase system (“a-a-a-a”) drifts out-of-phase, but the ideal

out-of-phase “a-b-a-b” attractor seen in theory to occur in the center of a large sample

(Fig. 3.4), with a = 0 and b = 0.5, does not develop in the four drop case because of the

influence of the boundary conditions (constant production of Br−) created by the constant

illumination of drops 0 and 5. The resulting stable attractor, shown in the simulation of

Fig. 3.6c, is composed of four drops whose phases measured with respect to drop 1 are given

by (φ1, φ2, φ3, φ4) = (0.0, 0.6, 0.1, 0.5), which is subtly different from the ideal out-of-phase

attractor of (φ1, φ2, φ3, φ4) = (0.0, 0.5, 0.0, 0.5). In the experiment, Fig. 3.6b, we observe

(φ1, φ2, φ3, φ4) = (0.0, 0.55, 0.0, 0.4). Experiment and simulation differ by drops 2, 3 and 4

having phase differences of ∼ 0.1 with respect to drop 1.

We can reach the attractor observed in Fig. 3.6 more quickly by changing the initial

condition using patterned illumination, as seen in Fig. 3.7, where the initial conditions are

(φ1, φ2, φ3, φ4) = (0.0, 0.55, 0.1, 0.53). The simulation very rapidly reaches a steady state

attractor corresponding to (φ1, φ2, φ3, φ4) = (0.0, 0.6, 0.1, 0.5), and the experimental phases

are quite close: (φ1, φ2, φ3, φ4) = (0.0, 0.62, 0.12, 0.52).

To obtain the “a-b-b-a” attractor, we use light to phase-shift the two middle droplets
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Figure 3.5: “aba” pattern for 3 drops. Temporal evolution of three BZ drops isolated by
constant illumination from the rest of the capillary; symmetric attractor. (a) Exp: spacetime
plot of 5 drops in the center of a 100 µm diameter capillary entirely filled with BZ drops.
[MA] = 320 mM. Average BZ drop diameter, a = 219 µm (±1%); sizes of oil gaps between the
oscillating BZ drops are 62 µm and 36 µm. Inset: photograph of the 5 BZ drops. Drops 0 and
4 are illuminated with constant light in order to isolate drops 1, 2 and 3 from the rest of the
capillary. Initially drops 1 and 2 oscillate in phase while drop 3 is delayed. Sim: simulation
of the 5 drops with same chemical and initial conditions as the experiment. The “+” symbol
indicates oxidation transitions for every fourth oscillation of each drop. (b) Experimental
phase difference (modulo 1) between pairs of drops, i.e. 2-1 (blue curve) means the phase
difference between drop 2 and 1. Note that phase differences of 1 and 0 are equivalent. (c)
Corresponding simulated phase difference. (d) Experimental and (e) simulated periods of
oscillation for each droplet. (f) Experimental and calculated phase difference as a function
of the number of oscillations. Adapted from previous work[10].
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with respect to the outer droplets to obtain the following initial conditions; (φ1, φ2, φ3, φ4) =

(0.0, 0.4, 0.4, 0.0), as shown in Fig. 3.8. The two middle droplets start to oscillate after the

light is removed, and they remain in-phase. The experimental ∆φ drifts slowly. For the

simulation, shown in Fig. 3.8c, the phase difference between inner and outer drops is 0.5

yielding the symmetric attractor, (φ1, φ2, φ3, φ4) = (0.0, 0.5, 0.5, 0.0), which, to within slow

temporal drifts, is consistent with experiment.

If we again initialize a 4-drop system by phase shifting the inner two drops with respect

to the outer two drops, as in Fig. 3.8, but this time impose a slight phase difference between

the two interior drops to have initial conditions (φ1, φ2, φ3, φ4) = (0.0, 0.55, 0.53, 0.0), we see

in Fig. 3.9 that initially the system reaches the “a-b-b-a” attractor, but then jumps to the

same “a-b-a′-b′” attractor shown in Figs. 3.6 and 3.7 with (φ1, φ2, φ3, φ4) = (0.0, 0.6, 0.1, 0.5).

Again, within some slight temporal drift, experiment and simulation agree. Apparently, the

“a-b-a′-b′” attractor has a larger basin of attraction than the “a-b-b-a” attractor.

For the system consisting of four drops, we study the temporal evolution for four different

initial conditions. In each case we model the time dependence using the FKN model described

in Chapter 2. The agreement between simulation and experiment of the temporal evolution

of the transient initial state towards the stable attractor shown in the space-time plots and

phase-difference plots is excellent. We note that there are no adjustable parameters. The

only changes from case to case are the initial conditions, which are chosen to match the

experiment. The agreement between theory and experiment is almost quantitative; the one

discrepancy is in the period of oscillation for which the experimental period is between 1.25

and 1.5 times longer than the simulated period. The shortcomings of the FKN model with

respect to period have been discussed in the literature[53]. We find two attractors for the

four drop system. The one with phase pattern (0.0, 0.6, 0.1, 0.5) seen in Figs. 3.6, 3.7, and

3.9 approaches the “ideal” anti-phase pattern, where each drop is half cycle out of phase

with its neighbors, as the number of drops becomes large. Interestingly, we also observe a
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symmetric attractor, (φ1, φ2, φ3, φ4) = (0.0, 0.5, 0.5, 0.0), shown in Fig. 3.8, whose equivalent

we did not observe in experiments with larger numbers of drops.

5 drops For five droplets, the only stable attractor we find, as shown in Fig. 3.10,

(φ1, φ2, φ3, φ4, φ5) = (0.0, 0.6, 0.1, 0.6, 0.0). It is close to, but significantly different from

the ideal out-of-phase pattern expected for an infinite array, where adjacent drops have a

phase difference of 0.5.

In general, the experimental attractors are less stable than the corresponding simulated

attractors. The consumption of chemical species during the experiment causes changes in

the period of oscillation, but the drops largely remain synchronized and this only produces

a small steady drift in ∆φ compared to the simulations. In all cases, the simulated periods

of the drops in the systems composed of 4 or 5 drops are systematically greater than the

experimental periods by up to 50%, as noted previously[53]. Nonetheless, the simulated

patterns of phase differences, including transient responses to initial conditions, agree qual-

itatively with the experimental ones. The consumption of chemical species (malonic acid in

particular) in closed systems will be further discussed in the following section.

3.1.2 Not So Weakly Coupled BZ Droplets

Our experiments and models[34] suggest that the inhibitory coupling strength increases as

m decreases. In addition, excitatory coupling via excitatory species HBrO2 and BrO2· can

no longer be neglected at low m, giving new patterns that we will discuss in details in this

section.

In all cases we compare experiments on closed systems with theory for open systems

in which the concentrations of malonic acid, sulfuric acid and bromate ion are assumed to

remain constant. This enables us to identify stable attractors and to avoid modeling the

poorly understood details of malonic acid consumption. As long as the fractional change in
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Figure 3.6: “abab” pattern for 4 drops. Temporal evolution of four BZ drops; asymmetric
attractor. (a) Exp: spacetime plot of 6 drops. [MA] = 320 mM. BZ drop size, a = 218 µm
(±1%), oil gap, b = 46 µm (±7%). Inset: photograph of the 6 BZ drops. Drops 0 and
5 are illuminated with constant light in order to isolate drops 1 to 4, which are initially
synchronized by light and evolve to an out-of-phase pattern. Sim: simulation of the 6
drops. Every fourth oscillation is marked by a “+”. (b) Experimental and (c) corresponding
simulated phase difference. (d) Experimental and (e) simulated periods of oscillation for
each droplet. Adapted from previous work[10].
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Figure 3.7: “abab” pattern for 4 drops with light perturbation. Temporal evolution of four
BZ drops; asymmetric attractor. (a) Exp: spacetime plot of 6 drops. [MA]= 380 mM.
a = 116 µm (±3%), b = 17 µm (±11%). Inset: photograph of the 6 BZ drops. Drops 0 and
5 are illuminated with constant light. Drops 1 and 3 are illuminated for about 300 seconds.
With light perturbation, the 4 drops start with an out-of-phase pattern and reach a similar
out-of-phase pattern as Fig. 3.6, but much faster. Sim: simulation of the 6 drops. Every
fourth oscillation is marked by a “+”. (b) Experimental and (c) simulated phase difference.
(d) Experimental and (e) simulated periods of oscillation for each droplet. Adapted from
previous work[10].
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Figure 3.8: “abba” pattern for 4 drops with light perturbation. Temporal evolution of four
BZ drops; symmetric attractor. (a) Exp: spacetime plot of 6 drops. [MA] = 380 mM.
a = 194 µm (±2%), b = 129 µm (±6%). Inset: photograph of the 6 BZ drops. Drops 0 and
5 are illuminated with constant light. Drops 2 and 3 are illuminated for about 300 s. Sim:
simulation of the 6 drops. Every fourth oscillation is marked by a “+”. (b) Experimental
phase difference. (c) Simulated phase difference. (d) Experimental and (e) simulated periods
of oscillation for each droplet. Adapted from previous work[10].
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Figure 3.9: “abba” to “abab” pattern for 4 drops with light perturbation. Temporal evolution
of four BZ drops; asymmetric attractor. (a) Exp: spacetime plot of 6 drops. [MA] = 380
mM. a = 109 µm (±3%), b = 15 µm (±12%). Inset: photograph of the 6 BZ drops. Drops
0 and 5 are illuminated with constant light. Drops 2 and 3 are illuminated for about 300
s. The four drops start with a symmetric attractor, as in Fig. 3.8, but evolve to the same
out-of-phase attractor as in Figs. 3.6 and 3.7 after a few oscillations. Sim: simulation of the
6 drops. Every fourth oscillation is marked by a “+”. (b) Experimental and (c) simulated
phase difference. (d) Experimental and (e) simulated periods of oscillation for each droplet.
Adapted from previous work[10].
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Figure 3.10: “ababa” pattern for 5 drops with light perturbation. Temporal evolution of
five BZ drops; symmetric attractor. (a) Exp: spacetime plot of 7 drops. [MA] = 210 mM.
a = 135 µm (±1%), b = 48 µm (±15%). Inset: photograph of the 7 BZ drops. Drops 0
and 6 are illuminated with constant light. Drops 2 and 4 are illuminated for about 300 s so
that the 5 drops start with an out-of-phase pattern. Sim: simulation of the 7 drops. Every
fourth oscillation is marked by a “+”. (b) Experimental phase difference. (c) Simulated
phase difference. (d) Experimental and (e) simulated periods of oscillation for each droplet.
Simulated drops 1 and 5 have equal periods, as do drops 2 and 4. Adapted from previous
work[10].
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the concentrations of these three chemicals is small, the experiments on the closed systems

and our simulations of of the open systems agree well.

Here we consider systems in which the m is smaller than the sulfuric acid and bromate ion

concentrations, so the consumption of malonic acid represents the greatest difference between

the open and closed systems. To compare theory and experiment, we prepare a series of BZ

emulsions as a function of m and compare the initial behavior of each of these emulsions,

which are closed systems, with the corresponding theoretical open systems. Pursuing the

same logic, we reason that the time dependence of a single closed system can be qualitatively

mapped onto a series of open systems with decreasing m.

In our numerical investigations of open systems, steady state dynamical patterns are

identified as attractors. Technically, no attractors exist in the closed system, because the only

steady state is equilibrium. However, as we previously demonstrated, our closed system gives

rise to “pseudo-attractors” that maintain an oscillatory pattern for many periods and have

the same dynamic behavior as the true attractors found in simulations of the corresponding

open system[10].

3.1.2.1 Consumption of Malonic Acid in Closed System

In Fig. 3.11 we present an experiment that is representative of many of the phenomena

observed for BZ drops at low malonic acid. Consider the complex behavior illustrated in the

space-time plot of Fig. 3.11c. In the beginning, drops are synchronized to begin oscillating

in-phase, but with time drift out-of-phase. At the end, some drops (e.g., #4, #5 and

#6) switch back to in-phase, while some others (e.g., #2) stop oscillating.The oscillation

period is longer for drops that are out-of-phase with their neighbors than for in-phase drops.

The period increases with time, and the oscillation waveform of the oxidation/reduction of

ferroin changes with time. All of these phenomena will be explained as a consequence of the

consumption of malonic acid, leading to increased inter-drop coupling.
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Proceeding in detail, Fig. 3.11a is a photograph of a 100 µm inner diameter hydropho-

bized capillary filled with BZ drops that are in contact with each other. The oil wets the

capillary, and surface tension causes the drops to adopt a cylindrical shape with hemispheres

on the end. Fig. 3.11b shows 120 µm long BZ drops (red arrows) separated by 40 µm oil

gaps (green arrows) in a non-hydrophobized capillary. Fig. 3.11c shows a space-time plot of

the BZ drops in Fig. 3.11b with initial m = 40 mM. With these initial conditions, the drops

spontaneously oscillate. All the drops are initially synchronized to have the same phase by

first suppressing the oscillations via strong illumination for several minutes and then remov-

ing the light from all the drops simultaneously. During the first two oscillations, drops #1

through #6 oscillate in-phase while drop #7 is out of phase. With time, the remaining drops

sequentially fall out of phase starting with drop #6, then #5, etc. By the 12th oscillation, all

seven drops are out of phase with each other. However, at the 14th oscillation, drops #5 and

#6 synchronize in-phase and at the 15th oscillation, drops #4, #5, and #6 are synchronized

in-phase. At this time, drops #1, #2, and #3 stop oscillating altogether. During the out-of-

phase regime of the first 15 oscillations, the phase-shift between adjacent droplets is never

π (180°). For instance, the phase-shift between droplets #6 and #7 is less than 0.7π during

most of the experiment. As previously reported, such a condition during the out-of-phase

regime can be considered as a mark of weak inhibitory coupling[10]. Our explanation for

the evolution over time from in-phase to out-of-phase behavior for the first 15 oscillations

is that the initial in-phase condition, set by the imposition of light, is unstable, and the

systems evolves towards the stable anti-phase attractor. However, over time m decreases as

it is consumed in the closed system. Our numerical studies of a pair of interacting drops

in an open system reveal that at low m the diffusive coupling of Br2, HBrO2, and BrO2·

leads to bistability between in-phase and out-of-phase attractors, which explains why after

15 oscillations some of the drops adopt an in-phase attractor[34]. Finally, at lower m some

drops stop oscillating. We identify those drops with stationary Turing states, triggered by

55



strong inhibitory coupling, which are predicted to be bistable with in-phase attractors at

very low m[34].

Fig. 3.11d shows the period as a function of time for each of the seven droplets as

numbered on the space-time plot. The periods for the droplets that oscillate in-phase and

for the droplets oscillating out-of-phase with adjacent neighbors evolve along two different

lines. At the beginning of the experiment, only one droplet (#7) is out of phase with

the other drops and lies on the out-of-phase line, which has a longer period than the in-

phase drops at the corresponding time. Once a droplet moves from the initially unstable

in-phase behavior to the more stable out-of-phase attractor, the period increases and the

drop switches to the upper line. This process occurs more gradually in droplet #1, which

does not go back to in-phase interaction. At a later stage some droplets, e.g. #5 and #6,

return to their earlier in-phase behavior and consequently, their period decreases. Fig. 3.11e

shows the temporal behavior of a single drop that is extracted from an array of interacting

drops with initial conditions m = 60 mM, A = 600 mM and h = 320 mM (double the

default condition). The intensity of transmitted light, which is proportional to the ferroin

concentration, is also plotted as a function of time. There is a noticeable lengthening of the

period and change of duty cycle, defined as the fraction of each cycle spent in the oxidized

state, with time. Oscillations with a long duty cycle of the oxidation state are observed

in low m solutions, while the oscillations have a short duty cycle at high m[34, 54]. Fig.

3.11f shows how the ferroin concentration, calculated in the point oscillator model for a

pair of coupled drops in steady state, varies as a function of time for different values of

m. Matching the waveform from the calculation with the observed waveforms in Fig. 3.11e

allows us to estimate how m varies as a function of time. For this range of conditions we

find m(t) = 60[mM] − 0.03[mMs−1]t[s]. Fig. 3.11g shows the numerically calculated period

(based on the FKN model) of a single BZ droplet as a function of malonic acid concentration.

The period increases as m decreases; thus all the observations in Fig. 3.11 are consistent
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with a decreasing concentration of malonic acid in the drops with time.

3.1.2.2 Excitatory coupling and in-phase behaviors

trigger waves Using m = 40 mM and droplets in contact, or using m = 20 mM and more

closely spaced droplets than in Fig. 3.11, we were able to obtain a stable in-phase behavior

of large arrays of 1D droplets as observed in Fig. 3.12 (a-d). We were unable to observe

such patterns for 40 mM < m < 2 M. In contrast with previously reported unstable in-phase

patterns3, the stable patterns found here often (but not always) initially begin with zero

phase shift between adjacent drops and subsequently develop a small, but constant phase

shift between adjacent droplets, creating a propagating BZ wave, analogous to the behavior

observed in a continuous aqueous BZ solution.

We simulated the observed wave pattern using COMSOL to model a chain of 2D disks

in oil. We postulated that the waves observed experimentally in Fig. 3.12 b, d were trigger

waves. To numerically explore this possibility we set one drop on the edge of the simulation

box to have a higher concentration of sulfuric acid than the other drops, causing that drop to

oscillate faster than the other drops and thus act as a trigger (Fig. 3.12 g, h). We compared

experiments showing traveling waves in drops in cylindrical capillaries with simulation and

found similar behavior. To validate the simulations, we modeled a continuous BZ solution

confined in the same capillary and compared with experiment. Again the simulation and

experiment were similar, as illustrated in Fig. 3.12 (e-h). The one discrepancy was that the

frequency of the oscillation in the simulation was about twice that found in the experiment.

This is a shortcoming of the FKN model, and not a consequence of the finite element as-

pect of the calculation. This discrepancy in oscillation frequency led to the wave speed in

simulation being twice as fast as in experiment; however, the calculated wavelength agreed

with experiment. In both simulation and experiment, the speed of the trigger wave in the

continuous BZ fluid was twice the speed of the wave in the chain of drops. The oil gap
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Figure 3.11: Low malonic acid concentration BZ oscillations in a 1D array of drops. (a)
Photograph of section of a hydrophobized cylindrical capillary of 100mm inner diameter
filled with drops containing the BelousovZhabotinsky reaction. The drops are separated by
fluorinated oil. (b) Magnified section of an unhydrophobized capillary containing BZ drops
(red arrows) separated by oil (green arrows). Droplet diameter, a = 120 µm. Oil gap,
b = 40 µm. (c) Space-time plot of seven drops shown in (b). Three arrows indicate the oil
gaps between drops, which appear as bright lines running parallel to the time axis, because
the light transmitted through the oil gap is constant in time. Bright lines parallel to the
space axis correspond to the oxidized state of the BZ reaction. (d) Period vs.time for the
seven drops shown in the space-time plot of (c). Initially, [MA] = 40 mM. (e) Transmitted
light intensity through one drop as a function of time. The intensity profile as a function of
time for the 2nd, 15th, and 22nd oscillations. (f) Calculated ferroin concentration vs. time
for different concentrations of malonic acid, with [BrO3] = 600 mM and [H2SO4] = 80 mM,
a = b = 150 µm. (g) Calculated oscillation period vs. malonic acid concentration for a single
BZ droplet, using default chemical conditions: [BrO3] = 300 mM and [H2SO4] = 80 mM.
Adapted from previous work[17].
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diminishes the diffusive flux in comparison to the continuous BZ solution, offering a possible

explanation for the slower propagation speed in the drops.

To explore the origin of the temporal evolution of the phase between adjacent drops from

initially zero phase to a constant phase as shown in Fig. 3.12, we repeated the trigger-wave

simulations of Fig. 3.12 g, h as a function of inter-drop coupling strength. In Fig. 3.13a

we simulate a line of identical drops, except for one drop on the end, which has a higher

frequency. The drop spacing is 60 microns, large enough that the fast drop does not launch

a trigger wave, but the drops are still sufficiently coupled to oscillate in phase. Simulated

light was shone on the middle drop with sufficient intensity to suppress oscillation in that

drop. One observes that drops immediately adjacent are slightly influenced by the increased

bromine produced by the illuminated drop. In Fig. 3.13b the inter-drop separation is reduced

to 20 µm. Now a trigger wave is formed, but does not propagate across the light-induced gap.

From these simulations we conclude that trigger waves require a stronger coupling between

drops than do in-phase attractors with zero phase shift between neighbors. Fig. 3.13c shows

an equivalent experiment. The drop in the center of the capillary is illuminated, suppressing

its oscillation. The drops initially oscillate with zero phase shift between neighbors, but with

time, a traveling wave emerges as the malonic acid concentration decreases and the coupling

strength consequently increases.

cluster patterns In Fig. 3.14a, we present a space-time plot highlighting three pairs of

in-phase droplets numbered 1 - 6. The pattern consists of a row of drops in which at a

particular instant in time all drops form pairs where drops in a pair have the same phase,

but each pair is 180° out-of-phase with its neighboring pairs, i.e. drops #1 and #2 have

0° phase, drops #3 and #4 have 180° phase and drops #5 and #6 have 0° phase. We

refer to this pattern as a “local in-phase, global out-of-phase” attractor. In Fig. 3.14b we

observe defects in this synchronization pattern that occur when there is an additional drop
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Figure 3.12: In-phase patterns: Trigger wave experiments vs. simulations. (a, c) photographs
of drops in capillary. (b, d) Space-time plots. (a, b) [MA] = 20 mM, (c, d) [MA] = 40 mM.
Droplet diameter is (a, b) 150 µm and (c, d) 97 µm; distance between droplets is (a, b)
36 µm and (c, d) touching droplets. (e) Experiment: single phase BZ solution ([MA] = 20
mM). Trigger wave speed 2 mm min−1. (f) Experiment: BZ droplets (100 µm), trigger wave
speed 1 mm min−1. (g) Simulated in COMSOL, single phase using [MA] = 20 mM. Trigger
wave speed, 4 mm min−1. (h) Simulated in COMSOL, BZ droplets (200 µm), trigger wave
speed 2 mm min−1. The topmost droplet has slightly higher [H+] = 0.2 M than the rest
of the droplets (0.16 M) to act as an intrinsically faster “trigger”. PHBrO2 = 0, PBr2 = 2.5,
PBrO2· = 5. Identical results are obtained with PBr2 = 2.5, PHBrO2 ≈ 0.01 and PBrO2· = 1.
Adapted from previous work[17].
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Figure 3.13: Traveling waves and coupling strength. Blue arrows indicate light suppressed
BZ drops. (a, b) COMSOL simulations ([MA] = 20 mM, PHBrO2 = 0, PBr2 = 2.5, PBrO2·
= 5): (a) drop size a = 160 µm, oil gap b = 60µm. (b) a = 200 µm, b = 20 µm, light
intensity 0.01 s−1 (pseudo concentration in the model). In both (a) and (b) the first drop
(top, [H+] = 0.22 M) is made to oscillate faster than the other drops ([H+] = 0.16 M). The
light-suppressed drop in the middle separates the drop array into two parts in each case.
Trigger wave behavior is observed only in (b), where the inter-drop coupling is stronger,
but in-phase attractors are observed for both (a) and (b). (c) Experiment ([MA] = 20 mM,
a = 100 µm, b = 10 µm). Although the a/b ratio in this experiment is the same as in (b),
the result resembles (a). The experiment started with an in-phase attractor with zero phase
shift between drops and evolved into a trigger wave. Adapted from previous work[17].
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separating two pairs, i.e. drops #1 and #2 have 0° phase, drops #4 and #5 have 180° phase

and drop #3 is the defect. In this case, the droplet separating the two pairs (drop #3)

alternately synchronizes in-phase with the neighboring pairs to each side; a feat that is only

possible when the middle droplet oscillates with twice the frequency of its neighbors. As

in the case of the stable in-phase patterns in Fig. 3.12, the patterns observed in Fig. 3.14

require low m and/or droplets with small separation. We observed these local in-phase -

global out-of-phase modes for m up to 60 mM, as observed in Fig. 3.14c. At higher m,

even touching droplets yield only out-of-phase patterns[10]. Typically, as the BZ reaction

proceeds towards equilibrium, oscillations eventually give way to a stationary Turing pattern

with some drops locked in the oxidized state and others in the reduced state.

Often, the local in-phase - global out-of-phase pattern is mixed with “pure” out-of-phase

behavior or with stationary droplets. In Fig. 3.14a, on either side of the pairs of highlighted

arrowed regions, we observe drops where nearest neighbors are out-of-phase, while in Fig.

3.14b the right side of the space-time plot shows stationary droplets while the left side remains

oscillatory. When the pattern includes stationary droplets, as observed in Fig. 3.14b and

c, the stationary droplets produce a variety of complex, often symmetric, patterns. In Fig.

3.14c we observe periodic stationary Turing patterns with wavelengths of 4 drops; in Fig.

3.14b the Turing wavelength is 3 drops. The most commonly observed in-phase clusters

consist of a pair of droplets, and the number of droplet clusters drops off sharply with the

size of the cluster.

3.2 Measurement of Coupling Strength

Theoretical models of coupled BZ oscillators are necessarily simplified, not only because

of the complexity of the chemical kinetics of the reaction, but also because the degree to

which the chemicals partition into the oil and their reactivity within the oil is poorly known.
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Figure 3.14: Space-time plots of mixed mode patterns. (a) Droplets are 170 µm in diameter
separated by 70 µm oil gap, [MA] = 20 mM. (b) Droplets of 100 µm diameter are in contact,
[MA] = 40 mM. (c) Droplets of 70 µm diameter are in contact, [MA] = 60 mM. Before starting
each experiment, the droplets were synchronized in-phase by illuminating the capillary with
intense 450 nm light for about 10 min. In the space-time plots, long double arrows mark
periods of at least two in-phase neighbor droplets; short arrows, half the size of the long
arrows, mark the period of a single droplet Adapted from previous work[17].
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However, because the kinetics within the microdroplets are the same as in the macroscopic

BZ reaction, one can make use of well-established detailed models[30, 31] as a starting point.

We model the coupled BZ drops at three levels of approximation. The most realistic

consists of a finite element model (COMSOL) of the reaction-diffusion equation in 1D, 2D

and 3D, where each drop is modeled as a point, disk or sphere, respectively. Only minor

differences are observed between 1D, 2D and 3D drops arranged periodically in a straight

line. The capillary walls are treated as a no-flux boundary condition. The reaction term is

modeled using the 7-variable FKN model as detailed in Chapter 2. Chemicals are allowed

to diffuse within the drop and the oil and to exchange between the two phases governed by

a partition coefficient, P , defined as the ratio of equilibrated concentrations of a particular

species in the oil and water phases (P = coil/cwater). This boundary conditions at the oil-

water interface are enforced in COMSOL using the stiff-spring method (as demonstrated in

the “dialysis” model in COMSOL’s built in examples) to have the right partition coefficients.

Each chemical species has the same diffusion constant in the oil and the water. No chemical

reactions are allowed to occur in the oil, which we find experimentally is not the case[17].

However, we argue that this simplification is justified for most of the cases studied here.

Models of intermediate complexity approximate each spatially extended drop as a 7-variable

FKN oscillator confined to a single point. The BZ drops are diffusively coupled to their

nearest neighbors. This class of models, consisting of a ring of diffusively coupled point-like

chemical reactors, was first introduced by Turing[1]. We numerically solve the point model

using MATLAB. The diffusion across a 100 µm sized droplet takes very little time comparing

to the oscillation period, so the droplets are oscillating homogeneously. Thus the point model

is justified. The point model and finite-element model give similar results for 1D systems.

Finally, at the most abstract level, we construct a single variable phase oscillator model as

introduced in Chapter 2, in which the phase coupling function is derived from the point

oscillator model.
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3.2.1 Inhibitory Coupling Strength: Finite Element Analysis

Previous experimental studies[19, 9, 10] of a large number of equal spaced droplets inside a

cylindrical capillary found anti-phase attractors, in which adjacent drops oscillated 180° out

of phase with each other. This occurred for a wide range of droplet diameters a, length

of oil gap between droplets b and intermediate malonic acid concentration m. This anti-

phase behavior was explained to be a result of inhibitory coupling of the drops, which arises

from the diffusion of bromine (Br2) between droplets. For clarification, in the aqueous BZ

reaction, inhibition is carried out by bromide ion (Br−), but this charged species does not

partition into the oil. However, Br2, which is nonpolar, partitions readily into the oil and

diffuses from drop to drop. Once inside the aqueous phase, Br2 brominates MA, generating

Br−; thus Br2 acts as the carrier of inhibition, and not as the inhibitor itself (Eq. 2.4).

Our results suggest that this bromination can be characterized by an effective rate constant

keff = 10[s−1] + 29[M−1s−1]m.

3.2.1.1 Origin of Coupling: Diffusive Flux

In Fig. 3.15a, we present the results of solving a reaction-diffusion finite element model

of the FKN equations. The model accounts for the permeation of the activators bromine

dioxide and bromous acid, as well as bromine, which couples to the inhibitory reaction, into

the oil separating the BZ drops. We modeled the drops as spheres contained in a cylindrical

capillary whose inner diameter matches the sphere diameter. We also modeled the spheres

as lines in 1D and disks in 2D and found only minor quantitative differences between the 1D,

2D and 3D solutions. To investigate how two drops interact, we ran simulations on three

configurations: two drops of diameter “D” separated by “0.1D” to represent conditions of

strong coupling, two drops of diameter “D” separated by “10D” to represent conditions of

weak coupling, and a single drop as a reference for comparison. In Fig. 3.15 the drops are 200

µm in diameter filled with BZ solution with m = 20 mM in a two-dimensional, rectangular,
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impermeable container filled with oil.

The observation that the period of a pair of 180° out-of-phase droplets is longer than

that of a pair of drops with 0° phase shift[9], which was described in Fig. 3.11d, can be

explained by examining Fig. 3.15b, in which the concentration of Br2 in the center of the

left drop and in the oil gap separating the two drops is plotted as a function of time. Bromide

(Br−) inhibits the BZ oscillation. Injection of a pulse of Br− into a homogeneous stirred BZ

solution lengthens the period of oscillation, because additional time is required for removing

it, which is required in order to start the autocatalytic BZ step[55, 56]. However, it is Br2

and not Br− that is transmitted between drops. Br2 is rapidly produced in a drop when

it undergoes the oxidation transition. If two drops are out-of-phase, then the pulse of Br2

produced in one drop (the transmitter) diffuses to its neighbor (the receiver), where it is

converted to Br−, thereby delaying the oscillation of the receiving drop.

The dashed blue curve (“10D drop”) in Fig. 3.15b shows the temporal variation of [Br2]

in the center of drop 1 in a closed container with drop 2 located 10 diameters away. In a

second calculation involving a container with a single drop, the temporal variation of [Br2]

is shown as the dashed green curve (“one drop”). The location of drop 1 and the size of

the container were the same as in the “10D drop” calculation, but drop 2 was removed and

replaced with oil. The temporal variation of [Br2] for two drops separated by 10 diameters

(“10D drop”) is indistinguishable from the case of one drop in a sealed container of the

same size (“one drop”), which indicates that when drops are 10 diameters apart they are

decoupled.

When the drops are brought close to each other (a gap of 0.1 drop diameter) the Br2

concentrations are significantly distorted, as shown in Fig. 3.15b “0.1D drop”. Compared to

the case of drops far apart, during half the cycle the level of Br2 inside drop 1 is depressed

and in the other half of the cycle the Br2 level in the same drop is elevated. The explanation

is that as the drops are out of phase with each other, when drop 1 undergoes the oxidation
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transition at t = 1778 s, it emits a large amount of Br2 at the moment when the Br2 level

in its neighbor, drop 2, is low. Thus drop 2 acts as a sink of Br2 leading to a reduction in

[Br2] in drop 1 compared to the case when the drops are greatly separated. Likewise, when

drop 2 oxidizes at t = 2400 s, it emits a pulse of Br2, raising the Br2 level of drop 1 above its

value when the drops are far apart and causing the period of oscillation to lengthen. Note

that the diffusive coupling is fast when the drops are separated by an oil gap of 20 µm; thus

drop 1 receives the pulse of Br2 less than 1 s after it is emitted by drop 2 at 2400 s.

Fig. 3.15a shows the flux and concentration of Br2 and Fig. 3.15b plots the concentration

as a function of time. We also measured the total flux in and out of a drop as a function of

partition coefficient in steady state conditions (not shown). Under these conditions the total

flux is zero. We found that the flux out of a drop increased monotonically with partition

coefficient in steady state, however it is not clear how to quantitatively relate the chemical

flux to the degree of dynamical coupling between drops.

3.2.1.2 Dimensional Analysis and S Parameter

One heuristic measure of the coupling strength is the dimensionless number S = PBr2D/

(a(a + b)keff) = µ/keff , which is the ratio of two rates: µ = PBr2D/(a(a + b)), the rate of

diffusive transport between BZ drops of the inhibitor bromine separated by an oil gap, and

keff , the effective rate constant characterizing the consumption of Br2, which as described

previously, occurs via bromination of malonic acid. Here PBr2 is the partition coefficient, D

is the diffusion coefficient of bromine, a is the BZ droplet size, b is the oil gap size. The

derivation of µ (assuming the drop-oil interface is flat) is presented in Chapter 2; an alter-

native expression for µ using the Derjaguin approximation considering the actual curvature

of the drops was derived in previous work[15].

In order to estimate keff , we plot the concentration of Br2 as a function of distance in

Fig. 3.15c at t = 1778 s, just after the drop on the left is oxidized, as depicted in Fig. 3.15a.

67



If the time for bromine to diffuse across a drop is short compared to the oscillation period,

then ∂c(x, t)/∂t can be neglected. For D = 10−5[cm2s−1] and a = 10−2[cm] the time for Br2

to diffuse across the drop, τD = 10 s, is much shorter than the oscillation period, which is

greater than 300 s. The solution to the time-independent reaction-diffusion equation is an

exponential with a characteristic decay length λ =
√
D/keff . We define λ as the distance

from the water/oil interface to the point that the Br2 concentration is reduced halfway to

its minimum. We find λ is constant in time, supporting the contention that ∂c(x, t)/∂t is

negligible. In Fig. 3.15c we plot λ−2 vs. m and numerically find that keff is linear in m;

keff = 70[M−1s−1]m. This result is roughly consistent with the 7-variable mechanism, which

suggests that keff should be equal to k6 + k7 = 10[s−1] + 29[M−1s−1]m.

Two factors, one chemical and one geometrical, control how strongly the bromine emitted

from one drop influences the oscillation of the receiving drop. In the limit of S � 1,

the drops are weakly coupled. Chemically, S decreases when keff is increased. This is

accomplished by increasing MA, which increases Br2 consumption inside a drop, leaving

less Br2 to diffuse between drops. Furthermore, at high m, the Br2 that is emitted from

one drop and transported through the oil is rapidly consumed in the receiving drop upon

arrival and therefore only slightly increases the Br2 concentration in the receiving drop.

Geometrically, increasing the separation of the drops weakens coupling. As transport is

diffusive, this both increases the transport time and broadens the transmitted pulse, thereby

reducing the diffusive transport between drops. In the limit of S � 1 the drops are strongly

coupled. Decreasing MA strengthens coupling because the reaction rate keff decreases. When

keff is small and S is large, bromine diffuses from the emitting drop to the receiving drop

faster than the receiving drop can consume the transmitted bromine. Consequently, the

concentration of bromine in the receiving drop will be significantly increased, resulting in

either a phase shift in the limit cycle, or, for very strong coupling, distorting the shape of

the limit cycle. Alternatively, the coupling strength can be increased by decreasing the drop
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separation, which increases the inter-drop diffusive transport. We previously observed that

as either MA or drop size decreases, more drops stop oscillating out of phase and enter a

non-oscillatory Turing state, in which drops are maintained far from equilibrium in either the

reduced or oxidized state1. This observation is consistent with theoretical work on coupled

BZ oscillators, which predicts that a stationary Turing state is reached as the inhibitory

coupling is increased[19, 8].

3.2.2 Phase Model for Weakly Coupled Oscillators

We now consider a second measure of the coupling strength. Drops that beat in synchrony

are coupled. Experimentally and numerically we have found that for a pair of drops there

are three limiting synchronous behaviors: in-phase, in which the oscillators have the same

phase, anti-phase, in which the oscillators beat 180° out of phase[36] and multistable, in

which multiple attractors are possible, depending on initial conditions. A natural measure

of the strength of the coupling is the degree to which one drop affects the phase of its

neighbor, characterized by the phase coupling function[36, 57, 58], H. The phase model is

θ̇1 = ω0 +H(θ2 − θ1) (3.1)

θ̇2 = ω0 +H(θ1 − θ2) (3.2)

as mentioned in Chapter 2 with θi the phase of the oscillator i, ω0 the frequency of each

oscillator when uncoupled, and H the phase coupling function. If H does not change sign,

then there is only one attractor, either in-phase or anti-phase, set by the sign of the derivative

of H. The number of zero crossings of H sets the number of multistable attractors (see

Kuramoto[36], Eq. 5.2.18).
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Figure 3.15: Bromine coupling. (a) Mesh used in a finite element calculation in 2D of two
200 µm drops of BZ fluid immersed in oil. The full FKN model was solved on each vertex
with the following conditions: [MA] = 20 mM, 20 µm oil gap. The boundary condition
at the oil/BZ interface was set by the partition coefficient, PBr2 = [Br2]oil/[Br2]BZ = 2.5,
PBrO2· = [BrO2·]oil/[BrO2·]BZ = 3, PHBrO2 = [HBrO2]oil/[HBrO2]BZ = 0. Here the partition
coefficient for BrO2· was set to an unphysical value 3 to test the effect of excitatory coupling
in simulation. The same coupling strength can be obtained by lowering this value to 1 and
using PHBrO2 ≈ 0.01. A no-flux boundary condition was set at the exterior boundary. The
time corresponds to 1778 s in (b). Arrows show flux of Br2 and color shows [Br2], with
orange high and blue low. (b) [Br2] as a function of time in the oil between the drops at the
midpoint on the symmetry axis and in the center of the leftmost drop. Two separations of
drops are calculated; 2000 µm (“10D”; 10 times drop diameter) and 20 µm (“0.1D”; 0.1 of
drop diameter). A single drop (one drop) in the larger geometry is also calculated. (c) [Br2] as
a function of distance across the simulation box of (a) for two different [MA]. Concentrations
are plotted at 1778 s, just after the left drop undergoes an oxidation transition. The range
(λ) that the [Br2] penetrates into the neighboring drop is a measure of the coupling strength.
λ is defined as the distance it takes for [Br2] to drop halfway to its minimum. Decreasing
[MA] increases las shown in the inset. Adapted from previous work[17].
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3.2.2.1 Single Species Effect on Coupling

Before we calculate the phase coupling function, we first numerically explore the qualitative

effect transmitted chemicals have on the synchronization of coupled drops. We do this

by allowing only one species at a time to diffuse between drops and numerically solve our

point oscillator and finite element models. The näıve expectation is that coupling through

inhibitory species would lead to out-of-phase synchronization and excitatory coupling leads

to in-phase synchrony. If a pair of oscillators are inhibitory coupled, then each delays the

other, and their phase difference will grow to the largest possible value, 180°. Such a coupling

is called “phase repulsive”[36]. By the same logic, coupling of excitatory species would lead

to in-phase coupling, because each oscillator stimulates the other, shortening their phase

difference, referred to as “phase attractive” coupling[36].

We consider, one at a time, transport of the inhibitory species, Br2 and Br−, and the

excitatory species, HBrO2 and BrO2·, in the point oscillator and finite element models. In

the point oscillator model, if we allow only Br2 to transport between drops and limit the

partition coefficient PBr2 < 400, the drops synchronize out-of-phase. While the measured

value is PBr2 = 2.5, for the sake of completeness we consider PBr2 > 400, in which case a

Turing/in-phase (depending on initial condition) mixed state is found. For the finite element

model, the result is qualitatively the same, however the partition constant at which the

behavior switches from out-of-phase to in-phase occurs at an 8-fold lower value, PBr2 = 50,

than in the point oscillator model. The ion Br− is charged and therefore not expected

to partition into the oil. However, again for the sake of completeness, we consider how

inter-drop transport of Br− influences synchronization. We find that in the point oscillator

model, for a partition coefficient PBr− < 0.1, the drops synchronize out-of-phase. For larger

partition coefficients the behavior first becomes bistable between out-of-phase and in-phase

and then solely in-phase. The same qualitative behavior is observed for the finite element

model. These two examples demonstrate that purely inhibitory coupling can lead to in-phase
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synchronization, contrary to our näıve expectation, but only when the partition coefficients

are unphysically high. When in-phase synchrony occurs, the drops are resetting, by which

we mean that the oxidation transition of one drop induces an immediate oxidation transition

in its neighbor. We note that it is possible in principle for in-phase synchrony in coupled

nonlinear oscillators to occur without resetting, but we never find this in our experiments

or simulations. The intuitive description is that at high inhibitory coupling strength, two

drops behave as one. With only excitatory coupling (restricting transport between drops to

either of the two activators, HBrO2 or BrO2·), only in-phase synchronization is observed.

In other words, weak inhibitory coupling is phase repulsive and excitatory coupling is

phase attractive. Strong coupling, whether inhibitory or excitatory, produces in-phase syn-

chrony. The dynamical behavior of coupled drops is summarized in Fig. 3.16a. For pure Br2

coupling, we identify the boundary between weak and strong coupling with the phase tran-

sition between out-of-phase and in-phase coupling. Using the values for the point oscillator

model at the transition, a = b = 150 µm, m = 200 mM, PBr2 = 400 and keff = 70m[s−1],

the coupling strength S = 0.63; thus for this case the transition for weak to strong coupling

occurs at S ≈ 0.6.

3.2.2.2 Dynamical Phase Boundary and S Contour

To test further the conjecture that S is a measure of coupling strength, we calculated the

phase behavior using COMSOL for two drops that are coupled solely by the diffusion of

bromine through the oil. The result is plotted as a function of m and drop size for the case

of oil gap equal to drop diameter and PBr2 = 2.5, is shown in Fig. 3.16b. Superimposed are

green contour lines of constant coupling strength, S. If S is a measure of coupling strength,

then the boundary between the anti-phase (AP) oscillatory and stationary Turing states

should occur for a constant value of S. Fig. 3.16b shows that the boundary corresponds

roughly to S ≈ 0.1, which supports the contention that the dimensionless parameter S,
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governs the dynamical behavior of the coupled BZ drops.

Additionally, for the case of bromine-only coupling, we calculated the dynamical phase

boundary between anti-phase and stationary Turing states as a function of drop size a and oil

gap size b using COMSOL and superimposed S contours as shown in Fig. 3.16c. While the

construction of the point model requires that the phase boundary is a function of a(a + b),

the functional form is not specified. In particular, there is no reason to suppose that the

phase behavior scales as inversely proportional to a(a+ b), as is demonstrated in Fig. 3.16c.

Furthermore, there is no such constraint on the phase boundary in the finite element models,

as those equations do not have a unique form of non-dimensionalization. We interpret the

results of Fig. 3.16c to mean that small drops are strongly coupled and that drop-drop

coupling is relatively insensitive to drop separation. Experimental study of the dynamical

behavior of drops as a function of size and separation will the subject of future work.

3.2.2.3 Phase Coupling Function H

Next we calculate H, the phase coupling function. Using the point oscillator model, we

numerically calculate the phase coupling function (see Eqn. 5.2.17b of Kuramoto[36], or

Eqn. 10.15 of Izhikevich[57]) for two identical coupled BZ drops as a function of drop

diameter, drop separation, and m. We consider that the following 3 components of the

Turing point oscillator model have non-zero partition coefficients; PBr2 = 2.5, PBrO2 = 1,

and PHBrO2 = 0.1. The first two were estimated from experiment; the last was obtained

by varying PHBrO2 until the best fit between experimental and calculated dynamical phase

diagrams was obtained. Thus PHBrO2 = 0.1 is a prediction of our point oscillator model.

Using the finite element model we obtained PHBrO2 = 0.01. While there were quantitative

differences between the two models, their qualitative behavior was similar.

There are two ways to calculate H. One is indirectly, as done by Kuramoto[36][57],

using the phase response curve of a single drop, which in principle could be calculated from
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Figure 3.16: Dynamical phase boundary and coupling strength S. (a) Calculated in the point
oscillator model with a = b = 150 µm, and [MA] = 200 mM. Only one chemical species at
a time is allowed to diffuse between two drops. Four species are considered; two inhibitory
and two excitatory. Phase behavior; AP; anti-phase oscillation. Turing (stationary); non-
steady state. IP; in-phase oscillation. “AP/IP” indicates a multi-stable state. The results
are qualitatively the same as those obtained from the finite element analysis (not shown).
The partition coefficient at the phase transition is indicated for the point oscillator model.
For Br2 in the point oscillator model, the coupling strength S = 0.6 at the phase transition
point. (b) Phase diagram as a function of drop size and malonic acid concentration (log
scale) calculated using COMSOL (1D) for two BZ drops coupled through only bromine with
partition coefficient 2.5 and a = b. The dark red region is in a stationary Turing state,
while the blue region is anti-phase oscillatory. Super imposed green lines are contour lines
of coupling strength S; the numbers are the values of S. (c) Similar to (b), phase diagram
as a function of drop size and oil separation with [MA] = 60 mM. Adapted from previous
work[17].
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the point oscillator model. Instead we obtain H directly by numerically calculating the

phase shift that one drop imposes on its neighbor[59] after one period. Consider two point

oscillators that are uncoupled (H = 0) and have a constant phase shift θ. Since they are

uncoupled θ̇i = ω0. The ferroin concentration of these drops is plotted as a function of time

in Fig. 3.17a (blue curves). At an arbitrary time, labeled t = 0 in Fig. 3.17a, we couple the

two drops via the oil and plot the ferroin concentration for the coupled drops as a function

of time (red curves). After one period of the uncoupled drop (τ), the phase shift of drop 1

(∆θ), relative to its phase when uncoupled is calculated and in Fig. 3.17b is plotted as a

function of θ for four different values of m. ∆θ/τ is equal to the phase coupling function

called Γ by Kuramoto[36] in Eq. 5.2.1711 and H by Izhikevich[57] in Eq. 10.1626. We use

units of phase that vary between 0 and 1. The phase shift is unambiguous, because the

coupled and uncoupled drops move on the same limit cycle, x(t), where x represents the

7 chemical variables in the FKN model. We numerically verified that ∆θ is independent

of the time when the two drops are coupled; for example, if the drops in Fig. 3.17a are

coupled beginning at t = 50 s or t = −50 s, ∆θ is the same as calculated for t = 0. In

Fig. 3.17a, the time when ∆θ is calculated is indicated as a dashed line. The value of ∆θ is

slightly less than ∆θ′, the phase difference between the expected oxidation transition for an

uncoupled drop and for the same drop after it is coupled. However, ∆θ′ is notable because

it is readily measurable[59]. As shown in Fig. 3.11, we measure the ferroin concentration

during the entire cycle, from which it is possible in principle to extract ∆θ′. However, in

practice, while numerically calculating ∆θ is easy, experimentally it is subject to a large

uncertainty. The sign of the phase shift tells whether or not the coupling is phase attractive

(negative) or phase repulsive (positive). As a measure of the coupling strength, we consider

the value of ∆θ when θ = 0.5, that is the phase shift, ∆θ, induced by coupling two drops

whose initial phase difference is θ = 0.5 or 180°. This particular choice for θ is somewhat

arbitrary. Using this definition, we find that the repulsive coupling strength increases as the
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drop size decreases, as the drop separation decreases, and as the malonic acid concentration

decreases, consistent with our previous measure of coupling strength, S. We find that the

coupling is purely repulsive for a wide range of conditions: 200mM < m < 2M and drop

size a > 100 µm, consistent with our previous observations with such drops[10]. For smaller

drops or low m, bistable attractors, in-phase attractors and stationary Turing states appear.

In Fig. 3.17b, for the case m = 20 mM, the coupling function crosses zero, rendering it

bistable, with an in-phase attractor above θ > 0.9 and anti-phase otherwise. The dynamical

phase behavior is summarized in Fig. 3.17c.

3.2.2.4 Validity of Phase Model

We also studied the dynamics of phase coupling for a pair of droplets using the point oscillator

model (Fig. 3.17d). Similar to Eqs. (10.13) to (10.17) in Izhikevich[57] and section 5.2.2 in

Kuramoto[36], we define θi(t) = t/τ + φi(t), i = 1, 2 for phases of the two droplets, with the

first term the phase of free-running oscillation (τ is the free-running period) and the second

term the slow phase deviation induced by coupling these two droplets. In Fig. 3.17d we plot

∆φ(t) = φ1(t)−φ2(t) as calculated from the point oscillator model and the phase model (Eqs.

3.1 and 3.2) for various initial conditions, ∆φt=0 = 0.1, 0.3, 0.5. For both models the phase

difference evolves from the initial condition to a steady phase deviation, ∆φt→∞ = 0.5,

corresponding to anti-phase coupling. The results for the point oscillator model give the

instantaneous phase difference (dotted lines), while the phase oscillator model (solid lines)

represents only the slow dynamics, as the coupling function H was obtained by averaging

the coupling between drops over one period. The fact that ∆φ corresponds for the point

and phase models establishes the validity of the phase model for BZ droplets in the weak

coupling limit.

76



(c)

Figure 3.17: Calculated Coupling Strength. (a) Ferroin concentration vs. time calculated
using the FKN point oscillator model for two drops in the out-of-phase condition. Thin blue
lines: decoupled drops. Thick red lines: coupled drops. Drops are coupled at t = 0 and the
phase shift (∆θ) between the coupled and decoupled drops is calculated after one period (τ)
of the uncoupled system as a function of the initial phase shift (θ) between the decoupled
drops. Phase is normalized to 1. (b) Phase shift after one period of coupling (∆θ) vs. initial
phase shift (θ) for different values of [MA] using the point oscillator model, with PHBrO2 =
0.1, PBr2 = 2.5, PBrO2· = 1, a = b = 150 µm. ∆θ increases with θ and increases as [MA]
decreases. (c) Phase diagram of attractor behavior as function of drop size and [MA] with
the same partition coefficients as in (b). The inset contour plot shows how the magnitude
of ∆θ for θ = π varies as a function of [MA] and drop size. IP: in-phase synchronization.
AP/IP: bistability. T: stationary Turing state, in which some drops stop oscillating. (d)
Dynamics of the phase difference between two oscillators (∆φ) calculated with the point
oscillator (dotted curves) and phase (solid curves) models using [MA] = 600 mM and the
same geometry and partition coefficients as in (b). ∆φt=0 = 0.1, 0.3, 0.5 for the blue, red, and
green curves, respectively. Phase varies between 0 and 1. Adapted from previous work[17].
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Chapter 4

Turing Morphogenesis and more

Too little liberty brings stagnation and

too much brings chaos.

Bertrand Russell

The Chemical Basis of Morphogenesis, written in 1952 by Alan Turing[1], described how

in circular arrays of identical biological cells and continuous rings of tissue diffusion can

interact with chemical reactions to generate up to six spatial-temporal periodic chemical

structures. After 60 years the Turing mechanism remains controversial in biology because

of uncertainty in both the reaction kinetics[60, 18] and transport mechanisms[61]. In chem-

istry, all six Turing patterns have been established in continuous systems on the centimeter

scale[7, 8], but not for diffusively coupled cells on the micron scale. Here we report an

experimental reaction-diffusion system ideally suited for testing Turing’s ideas in synthetic

“cells” consisting of microfluidically produced surfactant-stabilized emulsions[9, 10] in which

droplets containing the Belousov-Zhabotinsky oscillatory chemical reactants[11] are dispersed

in oil. In contrast to biology, here the chemistry is understood, rate constants are measured

and interdrop coupling is purely diffusive. We explore a large set of parameters through

control of rate constants, drop size, spacing, and spatial arrangement of the drops in lines
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and rings in one-dimension and hexagonal arrays in two-dimensions. In 1D we observe five

distinct spatial-temporal patterns that emerge as a result of intercell coupling and establish

all arise as predicted by Turing, although altered by nonlinearity. In 2D an additional pattern

is observed, which is incompatible with Turing’s analysis, for which we develop a non-linear

dynamics theory. The Turing model is regarded as a metaphor for morphogenesis in biology;

useful for a conceptual framework and to guide modeling, but not for prediction[62]. Here,

we develop a quantitative and falsifiable reaction-diffusion model that we experimentally test

with synthetic cells. We quantitatively establish the extent to which the Turing model in

1D describes both stationary pattern formation and temporal synchronization of chemical

oscillators via reaction-diffusion and in 2D demonstrate that chemical morphogenesis drives

physical differentiation in synthetic cells.

4.1 Establishing the Turing mechanism using BZ drops

Turing’s linear stability analysis (LSA) for morphogenesis predicts that in an isolated ring

of cells, as few as two morphogens, are sufficient for stationary pattern formation[1, 63] and

synchronization of oscillating cells, while at least three are needed for traveling waves. Turing

characterized this system as “mathematically convenient, though biologically unusual[1]”.

Although no examples of rings of living cells have been found, it is hard to overemphasize

the impact Turing’s model has had on developmental biology[40, 64, 65, 18, 62, 66].

4.1.1 Testing Turing Mechanism

To construct a tractable model Turing treated cells as geometric points and considered the

membranes separating cells as chemically specific barriers to diffusion, ignoring any chemical

reaction or accumulation of chemicals in the membrane. Turing’s resulting reaction-diffusion

model consists of rings of point cells diffusively connected directly to nearest neighbors,
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expressed as a set of equations each of the form[1]

dci

dt
= Fc(ci) + Mc (ci−1 + ci+1 − 2ci) (4.1)

where ci is a vector containing the concentrations of the chemical species in the ith cell, Fc is

a vector function describing the chemical kinetics of the c-species, and Mc is a diagonal

matrix containing the coefficients of diffusive transport (µc) of the c-species from drop to

drop. To describe the BZ chemistry we use a model developed by Vanag and Epstein[33, 34]

(VE model) that considers four chemical concentrations to vary in time: the inhibitory

components bromine (Br2 ) and bromide (Br−), the oxidized form of the catalyst (ferriin),

and the activator bromous acid (HBrO2). Turing did not specify how the coupling strength

µc varies with the physical-chemical parameters and different results arise depending on the

assumptions used to produce a geometric point model [67, 34]; we extend the Turing model

by explicitly calculating the coupling strength

µc = f
2DcPc (b+ d)

d2 (a+ b)

(
ln

(
b+ d

b

)
+
a− d
b+ d

ln

(
a− d
a

))
(4.2)

(see Supporting Information in previous work[15] for derivation), where Dc and Pc are the

diffusion and partition coefficients of the c-species in the oil, a is the length of the BZ drop,

b is the oil gap separating drops, d is the diameter of the capillary, and f is a fitting param-

eter, used to minimize the difference between experiment and theory. The only unknown

parameter in Eqn. (4.2) is the partition coefficient of HBrO2, Px. The four VE reaction

equations, Fc, contain the aforementioned 4 variable chemical species, 4 more chemicals,

whose concentrations are set initially and are approximated as constants in the model, and

9 known rate constants.

To elucidate this model, Turing[1] used linear stability analysis (LSA) and identified

six possible chemical structures in rings of diffusively coupled identical cells. In LSA, one
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characterizes how the steady state concentrations, i.e. those for which dci/dt = 0, respond

to small perturbations. If all perturbations decay, then the system is in a stable steady state.

However, if some perturbations grow with time, the steady state is unstable, and the fastest

growing perturbation is labeled a Turing instability. For a ring of N cells Turing proved that

the requirement of periodicity restricts dimensionless wavevectors of the perturbations to take

on one of three possible values; qmin = 0, qmax = 2πsmax/N , where for even numbered rings

smax = N/2 and for odd rings smax = (N − 1)/2 and q = 2πs/N where the integer s ranges

from 1 < s < smax. For each possible q, the perturbation growth can be either oscillatory

(ω > 0), or non-oscillatory (ω = 0), giving a total of six possible instabilities. Following

Turing’s nomenclature, the six instabilities (a-f ) are each characterized by a wavevector and

frequency, (q,ω), as follows: Turing case (a), (qmin, 0); (b), (qmin, ω); (c), (qmax, 0); (d), (q,

0); (e), (q, ω); and (f ), (qmax, ω). See Supporting Information in previous work[15] for more

mathematical details.

The Turing model incorporates three significant and untested theoretical approximations;

considering each cell as a point, simplification of chemical transport by elimination of explicit

consideration of the oil, and linearization of the BZ chemistry. To what degree does this

highly idealized model describe experiments on synthetic cells? Specific questions we answer

with experiment include: (i) How well does the simplified coupling term agree with exper-

iment? (ii) Are there more or less than the six predicted Turing states? (iii) How are the

linear states modified by non-linearities? (iv) Does the Turing model provide quantitative

and predictive understanding of experiment? (v) How do states depend on dimensionality?

(vi) Do cells undergo physical morphogenesis?

To test the Turing model in discrete cells we produced 1D linear and 2D hexagonal arrays

of drops by filling cylindrical and rectangular capillaries, respectively. Circular rings of drops

were created by adding the photosensitive catalyst ruthenium-tris(2,2’-bipyridyl) (Rubpy)

to the BZ mix, which has the effect that, as long as blue light is shone on the drops, they are
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held in the reduced steady state. Therefore, light can be used to create constant chemical

boundary conditions for networks of non-illuminated drops. We use a computer projector

coupled to a light microscope to generate patterned illumination[10] and isolate either pairs

of drops, or a ring of active drops from a 2D array as shown in Figures 4.1. A second

light source at the ferroin absorbance wavelength is used to observe, but not affect, the BZ

reaction. Space-time plots are generated by plotting the intensity of a single line of pixels

connecting the centers of adjacent drops as a function of time. Viewed in transmission, the

oxidized state appears bright, while the reduced state appears dark.

We prepared a series of 1D arrays of drops in rings and lines and determined the long

term emergent chemical states as a function of the two variables that most strongly control

interdrop behavior; malonic acid concentration and coupling strength. Coupling strength,

µc, is conveniently tuned experimentally by varying the drop size a and oil gap b using

microfluidics. In Figures 4.1 we illustrate examples of six distinct states and identify five

of them as coupling-induced emergent Turing states, Figures 4.1(b-f). The sixth state,

found for malonic acid concentrations below 1 mM, Figures 4.1(a), has the same pattern as

Turing state (a), however, theory predicts that this is a stationary, non-emergent stable state,

underscoring the point that observation of a chemical state with the same pattern as a Turing

state is not sufficient evidence that the state arises from a Turing mechanism[64, 60, 18].

Only the pattern with the symmetry of Turing case (b) is observed in a region of parameter

space not predicted by theory.

The behavior of finite rings depends the number of drops, N , in the ring as seen in Figures

4.1g, h for two rings with identical chemical composition, drop size and spacing, but with 5

and 6 drops, respectively. For these particular chemical conditions, LSA predicts a Turing

state (f) characterized by the wavevector-frequency pair (qmax, ω), as defined previously.

Turing’s prediction is that for N odd no two drops will oscillate at the same time; there

will be N beats per measure, while for N even there will be two beats per measure. For a
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Figure 4.1: Chemical states of linear and circular arrays of BZ drops. (a-f) 1D linear arrays.
Top: space-time plot demonstrating Turing state, Bottom: corresponding cartoon. Cartoon
colors: Blue, BZ drops in reduced state; Red, oxidized state; Cyan, oil. Five of the six Turing
solutions b-f are observed and labeled as in Turing’s paper[1]. (a) Stationary stable oxidized
state after initial transient; 10 mM MA, no NaBr, drop size 130 µm, and oil gap 20 µm. (b)
Turing case b, (long-wavelength, oscillatory), (qmin, ω); 2.4 M MA, 10 mM NaBr, drop size
∼230 µm, and oil gap ∼100 µm. (c) Turing case c, (short-wavelength, stationary), (qmax, 0);
20 mM MA, no NaBr, drop size ∼98 µm, and variable oil gap between 0 µm and 47 µm. (d)
Turing case d, (intermediate-wavelength, stationary), (q, 0); 40 mM MA, no NaBr, drop size
95 µm, and oil gap ∼0 µm (touching drops). (e) Turing case e, (intermediate-wavelength,
oscillatory), (q, ω); 640 mM MA, 10 mM NaBr, drop size 117µm, and oil gap 3µm. (f)
Turing case f, (short-wavelength, oscillatory), (qmax, ω); 380 mM MA, 10 mM NaBr, drop
size 106µm, and oil gap 25µm. (g-h) Odd and even circular arrays. Turing case f. Left:
oscillatory drops are labelled; all other drops are illuminated with light (cross) and held non-
oscillatory in the reduced state, Right: space-time plot. 640 mM MA, and drop size is ∼150
µm. (g) Five membered ring. Drops oscillate in a pentagramal pattern. (h) Six membered
ring. Neighboring drops are π radians out-of-phase. Adapted from previous work[15].
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ring of five drops, LSA predicts a waveform C5(r, t) ∝ exp(i(4πr/5 − ωt)), with 0 ≤ r ≤ 4

the drop number. In this expression, the phase is chosen such that a drop is oxidized when

4πr/5−ωt is equal to an even multiple of 2π. As time advances in increments of one fifth of

a period, the oxidized state in Figures 4.1g moves along the ring in a pentagramal sequence

from drops 0 → 3 → 1 → 4 → 2. For the ring of 6 drops, C6(r, t) ∝ exp(i(πr − ωt)), with

0 ≤ r ≤ 5. As shown in Figures 4.1h, all even numbered drops oxidize simultaneously at the

beginning of a period and half a period later all odd numbered drops oxidize.

Using published chemical rate constants of the VE model[33] we calculate two state

diagrams, one using Turing’s linear stability analysis (LSA) and the other the full non-

linear simulation (NLS) of Eqn 4.1 in one-dimension; these two theories are compared with

experiment in Figure 4.2. In order to assign coupling strengths to experiment, we again treat

f in Eqn. 4.2 as a fitting parameter, but now also fit the partition coefficient of the activator,

Px. The best agreement between the NLS and experiment was obtained for Px = 0.05

and f = 0.14. With respect to the experimental state diagram, the NLS overestimates

coupling strength 8-fold. Both state diagrams predict that as coupling strength increases

above zero the same five Turing instabilities (b-f ) appear with three oscillatory (green hues)

and two non-oscillatory (red hues). For 1D arrays of drops in capillaries, the linear and

non-linear theories predict the same basic features, with two notable distinctions. First,

non-linearity strongly suppresses the stationary states. Second, “cluster” states, distinctive

oscillating patterns consistent with Turing case (e) were experimentally sought and observed

only after calculations of the state diagram indicated their existence; thus the Turing model

is predictive. Below 1 mM malonic acid both theories predict the system is in a stationary

and uniform oxidized state, independent of coupling strength, shown as a thin, grey vertical

bar. Were this to arise as an instability, it would correspond to the sixth Turing state

(a). At low malonic acid and moderate coupling strength, both theories predict temporally

stationary, spatially non-uniform Turing states c,d, however, the non-linear stationary states

84



vanish for low coupling strength and the realm of non-linear stationary states is reduced to

lower malonic acid values compared with the linear analysis. Evidently, nonlinearity favors

oscillatory over stationary Turing states. Both theories predict a sharp transition between

oscillatory and stationary states with experiment closely following the boundary predicted by

the non-linear model. Both the LSA and NLS models predict a broad range of wavelengths

for both oscillatory and stationary states, which again is borne out by experiment. The

temporally oscillatory, 4-drop wavelength Turing state (e) consisting of a pattern of four

drops with the following sequential pattern; oscillatory with phase 0, stationary, oscillatory

with phase π, stationary, referred to as 0sπs is consistent with LSA, but a 4-drop “cluster”

state with a sequential pattern of two drops oscillating in phase followed by two drops

oscillating 180 degrees out of phase, 00ππ is inconsistent with LSA. In the NLS model

both the 00ππ and 0sπs states occur only at high coupling strength. These states were

experimentally sought and observed only after calculations of the state diagram indicated

their existence. Prior to the non-linear solution of equation 4.1 there were no experimental

indications that such patterns occurred; thus the Turing model is predictive.

To investigate the effect of dimensionality on Turing states, we performed experiments

on closed packed hexagonal arrays of drops, reported as squares in Figure 4.2. We observed

a state involving units of 3 drops arranged in a triangle that is not predicted by LSA or NLS

models, shown in Figure 4.3, in which one drop is stationary and the other two oscillate with

a phase difference of π, referred to as the s0π state[9, 15]. Linear stability analysis requires

all drops to share the same temporal behavior, i.e. all stationary, or all oscillatory, thus

the s0π state cannot arise as a linear instability. However, it could be a nonlinear effect,

but extensive numerical exploration of the full nonlinear chemistry using both the Turing

and finite element models on ordered hexagonal arrays failed to produce the s0π state with

homogeneous drops. The qualitative discrepancy between theory and experiment suggests

that a critical element is missing from the Turing model. Therefore, we developed a hy-
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Figure 4.2: Linear Stability Analysis (LSA) and Non-Linear Simulations (NLS) of the Vanag-
Epstein model of BZ, as a function of coupling strength and malonic acid concentration. Note
the scale change on the vertical axis at µu = 0.4. In all figures the colors are as indicated in
the key. The data is plotted with circles for 1D experiments and squares for 2D experiments.
The data points with a letter in the center are included in Figure 4.1. Space-time plots of
oscillatory states are inset in square areas; stationary states are inset in rectangular areas.
The dashed boundaries within the region of Turing state e of the NLN diagram indicates
location of traveling waves, the 0sπs state, and the 00ππ clusters. Drops do not synchronize
below the dash-dot line. All experimental data points are plotted according to the definitions
of µ given in the text with f = 0.14 and µu = 50µx. Adapted from previous work[15].
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Figure 4.3: Observations of 2D arrays of s0π states. a-b) Single frames demonstrating the
s0π state. The frames correspond to the first two oxidation transitions, labeled a and b
in c). c) Space-time plot of drops 1-2-3 shown in a) and b). Drop 1 is stationary while
drops 2-3 remain oscillatory with a phase difference of π. d) A combined image where the
stationary drops are outlined in red and the oscillatory drops are color coded by their phase
difference, φi = θi−θref, where 0 ≤ φ ≤ π and θref is the phase of the drop indicated with the
white vertical arrow. Drops where φi < π/2 are green and φi > π/2 are blue. Notice that
every third drop is stationary and every oscillatory drop is out of phase with its immediate
neighbors, two exceptions noted with orange arrows. Chemical conditions: 300 mM bromate,
3 mM ferroin, 0.4 mM Rubpy, 80 mM acid, 640 mM MA, and 10 mM NaBr. Drop size is
∼70µm. e) Point model simulation of three drops with various heterogeneity. Adapted from
previous work[15].
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pothesis for the s0π state that requires additional conditions to the Turing model; the drops

must be physically or chemically heterogeneous with two drops being “stronger” oscillators

that synchronize out-of-phase when isolated. In Figure 4.3e we demonstrate numerically

that the s0π state appears once the heterogeneity between drops is large enough. Experi-

mentally, we do not have evidence of drop heterogenity of the magnitude required by our

simplified theory; therefore the s0π state bears more scrutiny and will be further discussed

in section 4.2.3.3. In general, the experimental state diagram for two-dimensional arrays of

drops deviated significantly from the one-dimensional non-linear calculation, indicating that

dimensionality plays a significant role in pattern selection.

4.2 Two-Dimensional patterns

4.2.1 Introduction

In this section we examine 2D arrays of drops in more detail through experiments and finite

element simulations. We describe the transition from oscillatory to stationary chemical states

with increasing coupling strength, as well as the trend that the ratio of stationary oxidized

to stationary reduced drops increases with coupling strength. We also provide simulation

results to address a previously unresolved question[15], quantifying the degree of chemical

heterogeneity of BZ drops sufficient to generate mixed oscillatory and stationary patterns.

4.2.2 Methods

Rectangle glass capillaries (VitroTubesTM) were directly used for 2D emulsion storage with-

out further treatment. The capillaries were either 50, 100 or 200 µm in height, chosen to be

somewhat smaller than the droplet diameter such that the emulsion would spontaneously

form a monolayer. The capillary widths were either 10 or 20 times the height and the capillary
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lengths ranged between 2 to 4 cm. Such a capillary filled with BZ emulsion can be effectively

treated as a 2D system whose height is much smaller than the other two dimensions. Inside

the capillary, monodispersed micro-droplets stabilized by the surfactant spontaneously form

a close-packed hexagonal lattice so that the system is at the highest packing density. The

aqueous drops have a much lower mass density that does the fluorinated oil and float to the

top of the chamber. The capillaries were positioned so that the normal of the plane defined

by the capillary height and length was oriented parallel to gravity.

Detailed descriptions of chemical preparation and our home-made optical system for

illumination and data recording can be found in Chapter 2. Our BZ mixture in droplets

consisted of the following: [H2SO4] = 80 mM, [NaBr] = 10 mM, [NaBrO3] = 300 mM,

[Ferroin] = 3 mM, [Ru(bipy)3] = 0.4 mM, both metal catalysts were in reduced form. This

recipe was used in our experiments with various malonic acid concentrations, [MA], or m for

short, which was the only tunable parameter in our BZ chemistry.

The theoretical model used in this paper for the BZ reaction chemistry is identical to the

one in previous works[17, 10], which is the well established 7-variable FKN model[30, 31] with

minor modifications[33, 34]. Coupling from one drop to another through the intervening oil

was realized in the model by allowing up to three chemical species to partition into the oil

with an appropriate permeation constant. No chemical reactions were considered to occur in

the oil phase and the chemical species in the oil moved according to Fick’s laws of diffusion.

The 2D reaction-diffusion equation was solved using the finite element solver COMSOL

multiphysicsr. Periodic boundary conditions were used with different numbers of drops in

the unit cell. The three species which were allowed to partition into the oil phase were the

nonpolar species bromine (Br2), which acts as the sole inhibitor, and the radical BrO2· and

weakly polar bromous acid HBrO2, both of which act as activators. The fluorinated HFE

oil we used is almost apolar, thus an apolar molecule partitions preferably into the oil phase

rather than the aqueous phase. The partition coefficients, the ratio of concentration in the
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oil phase to the aqueous phase at the oil/water interface, used in the simulation are: PB =

2.5 for bromine, PR = 1 for the radical, and PH = 0.01 for bromous acid.

In order to explore which of the species is most important for coupling, simulations with

various combinations of coupling species including bromine only coupling (PB = 2.5, PR =

PH = 0), bromine and radical coupling (PB = 2.5, PR = 1, PH = 0), as well as coupling

with all three species were performed for a wide range of values of two parameters which

controlled coupling strength; malonic acid concentration (m) and drop diameter (a).

The purpose of introducing the concept of coupling strength between BZ droplets is to

develop a qualitative and quantitative understanding of the physical and chemical factors

that control synchronization of BZ drops. For example, one experiment that can be used to

define coupling strength is to consider two drops which initially begin to oscillate with a phase

difference that is different than their steady state phase difference and measure the time it

takes to reach steady state[15]. The inverse of this time is the synchronization rate, which

is considered to be a measure of coupling strength. For BZ emulsions the synchronization

rate increases as either the drop size or separation is decreased leading to the conclusion

that coupling strength increases as drop size or separation decreases. A second measure of

coupling strength is the transition between two chemical dynamic states. For example, for

one set of chemical conditions an array of drops separated by a great interdrop distance may

all be oscillating, but as the separation between the drops is decreased, the array of drops

turn stationary. Since the diffusive interdrop transport of chemicals increases with decreasing

separation, we consider that the transition from an oscillatory to stationary chemical state

serves as a measure of the transition from weak to strong coupling.

Previous studies identified bromine as the dominant chemical species which diffuses be-

tween drops[19]. Bromine itself functions as a communicator of inhibition and not the in-

hibitor itself in the following fashion. Bromine, being apolar, readily partitions from the BZ

solution into the oil phase. Once inside a neighboring drop, bromine reacts with malonic acid
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to form bromo-malonic acid and bromide, the latter of which acts as an inhibitor in the BZ

reaction, serving to hold the system in the reduced state. Because bromide is charged, it is

insoluble in the oil. If the malonic acid concentration is high, then adding bromine has little

effect on the chemical dynamics for two reasons. First, high malonic acid concentration leads

to high Br2 consumption inside a drop, leaving less Br2 to diffuse between drops. Second,

at high malonic acid concentration, the Br2 that is emitted from one drop and transported

through the oil is rapidly consumed in the receiving drop upon arrival and therefore only

slightly increases the Br2 concentration in the receiving drop[17].

One heuristic measure of the coupling strength between drops in contact is the dimen-

sionless number S = αPBD/(a
2keff) = µ/keff , which is the ratio of two rates: µ = αPBD/a

2,

the rate of diffusive transport between BZ drops of the inhibitor bromine in the limit of a

small oil gap[15], and keff , the effective rate constant characterizing the consumption of Br2,

which occurs via bromination of malonic acid[17]. Our previous numerical studies suggest

that keff ∝ m[17]. Here PB is the partition coefficient of bromine, D is the diffusion coef-

ficient of bromine, a is the BZ droplet size and α is a numeric factor of order 10 for drops

whose surfaces are separated by a surfactant layer of thickness 10−4a. The derivation of µ is

presented elsewhere[15]. The dimensionless ratio of reaction rate to diffusive rate is known as

the Damköhler number (Da), used in chemical engineering to assess the degree of conversion

in a continuous stirred-tank reactor, while S is the inverse. Large coupling strength corre-

sponds to S � 1 and occurs when the drops are small and/or the malonic acid concentration

is low. When the coupling strength is large, more bromine is transferred between drops than

can be consumed and therefore the chemical concentration of each drop is influenced by the

other. On the other hand, when the coupling is weak, the amount of bromine transferred

is small enough to be rapidly consumed and thus the drops are insensitive to each other’s

presence[17].

91



4.2.3 Results

4.2.3.1 Tunable diffusive lateral inhibition

We borrow the term “lateral inhibition” from biology to describe the effect of interdrop

diffusion of bromine on the oscillation of BZ droplets. In the BZ reaction, the oxidized state

is the result of an autocatalytic process and can be considered the “active” state, while

the reduced state can be considered “inhibited”. In the stationary state, a pair of initially

identical drops spontaneously differentiates chemically to a state in which one is oxidized

and produces the inhibitor bromine and the other is reduced and absorbs the bromine.

Drop diameter a and malonic concentration m are the two parameters we tune to change

coupling strength. Fig. 4.4a is an experimental state diagram of oscillation patterns for a

monolayer of monodispersed BZ droplets closed packed in a hexagonal array, as a function

of drop diameters at a constant malonic acid concentration of 640 mM. The unit cell of the

hexagonal array consists of three drops. The diagram shows the fraction of droplets in one of

three states; the oscillating state shown in green (Osc) or one of two possible stationary states

as a function of droplet diameter. Stationary states are either in the oxidized stationary

Turing state, shown in blue (OST) or the reduced stationary Turing state, shown in red

(RST). Each vertical bar shown in Fig. 4.4a as proportionally colored bars in green (Osc),

blue (OST) and red (RST) represents one experiment with several hundreds of identically

sized droplets. For a given experiment, only the drops with six nearest neighbors were

counted, hence those drops at system boundaries or at lattice defects were omitted. The

fraction of drops in each stationary state was normalized by the total number of drops

counted in each experiment.

Region III of Fig. 4.4a represents experiments with large drop diameters where the

interdrop diffusive coupling is weakest. A series of monodisperse drop arrays were studied

in the range 100∼450 µm, although only those with diameter less than 150 µm are shown
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Figure 4.4: Observed chemical states in 2D hexagonal lattices of BZ drops as a function of
drop diameter and malonic acid concentration. a) Patterns as a function of droplet diameter
a, with m = 640 mM. The unit cell has three drops. Arrows denote oscillating drops. The
angle between arrows is equal to the phase shift between oscillating drops. The “x” denotes
a stationary drop. Inset : Stationary pattern with 2/3 drops oxidized, in comparison to a
stationary pattern with 1/3 drops oxidized. b) Stationary Turing pattern with m = 600
mM and a = 50 µm. The normalized intensity of the drops was plotted as a function of
time. c) Stationary Turing pattern with m = 200 mM and a = 50 µm. The pattern at the
moment when all drops first oxidize simultaneously (arbitrarily labeled as t = 0) and the
stable pattern, 400 seconds later, are shown side by side.
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in Fig. 4.4a. In region III, all of the drops are oscillating, exhibiting the 2π/3 pattern[9]

where each of the three drops in a unit cell oscillate 120 degrees out of phase with each other.

This pattern is represented by an icon of 3 circles in a triangle with the arrows’ directions

indicating the evenly separated phase of the oscillating drops. In region II, corresponding to

drops of 50∼100 µm diameter, approximately 2/3 of the drops are oscillating and 1/3 are in

the reduced stationary Turing state, in a pattern denoted s0π[15] where the nomenclature

describes the state of the three drops; one of the three drops in a unit cell is stationary (s),

and the other two are oscillating π radians with respect to each other (0π). Parenthetically,

we note that in another instance we referred to this same pattern as the π-s state[9]. In

several figures this pattern is represented by a triangle of three circles with two arrows in

opposite directions representing the 180 degree phase shift between oscillating drops and one

with an X representing the one stationary drop.

Next we report a new phenomenon shown in region I, which is that for even smaller

drops, corresponding to stronger coupling strength, almost all the drops enter stationary

Turing states and that the fraction of stationary oxidized drops increases as the drop size

is decreased. In region I of Fig. 4.4a, corresponding to drops of high malonic concentration

(m = 640 mM) and less than 50 µm diameter, most of the drops do not oscillate. Data with

two drop sizes were shown in this range. At 40 µm about 20% were in the oxidized stationary

state and about 80% of the drops were in the reduced stationary state. At 30 µm almost

50% of the drops were oxidized stationary and 50% were reduced stationary. As the diffusive

bromine inhibition strength between drops increases with decreasing droplet diameter, we

hypothesize that stronger inhibitory coupling leads to a larger fraction of stationary oxidized

drops.

Figs. 4.4b and 4.4c lend further credence to our hypothesis that bromine coupling

strength controls the fraction of oxidized to reduced stationary drops. Here we compare

arrays of drops with similar droplet diameter (∼50 µm) and very different malonic concen-
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trations (600 mM for Fig. 4.4b and 200 mM for Fig. 4.4c). The vast majority of drops

in both Figs. 4.4b and 4.4c were in the stationary Turing state and resembled the samples

shown in region I of Fig. 4.4a.

Fig. 4.4b shows the normalized intensity of more than a thousand droplets as a function

of time. Photographs of a small portion of the full field of view were taken at different times.

At the very beginning of the experiment, t = 0, all drops were near the reduced state (i.e.

process A in the FKN mechanism, see Chapter 2) and hence the intensity of the full field of

view was the darkest in the whole experiment. This is a consequence of how the samples were

prepared. The drops were created with 10 mM bromide to elongate the induction time before

the first oscillation. This is convenient to allow us ample time to form the emulsion, seal the

sample cells, and adjust the microscope before oscillations start. The intensity of the image

during the induction period was set to 0 for normalization. Shortly after the beginning of

oscillations, when t = 94 s, almost all the drops suddenly transitioned to the oxidized state

and the total intensity reached maximum. This intensity was set to 1 for normalization. This

initial simultaneous transition to the oxidized state for almost all drops was not a result of

synchronization by interdrop communication. Rather it occurred because all the drops were

produced with the same composition and at nearly the same time. With time, a fraction of

oxidized drops relaxed back to the reduced stationary state and eventually only ∼1/3 drops

remained at the oxidized stationary Turing state. The pattern became stable after t ' 400

s. The stable pattern over a large domain of drops consisted of each oxidized stationary drop

surrounded by 6 reduced stationary drops, giving on average 2 reduced (dark) drops for each

oxidized (bright) drops, leading to a steady state intensity of 1/3 the maximum value. This

pattern is similar to that observed with the 40 µm diameter drops at 640 mM malonic acid

shown in Fig. 4.4a, with a similar fraction of oxidized stationary droplets. Defects in the

pattern of oxidized and reduced drops are seen in Fig. 4.4b. Whether or not the defects

are due to random fluctuations or arise as effects of packing imperfections and boundary
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conditions is unknown.

Fig. 4.4c shows photographs of the initial and the stable state of an array of 50 µm

diameter drops with a lower malonic acid concentration (m = 200 mM) than in Fig. 4.4b.

At the beginning of recording, almost all drops were in an oxidized state and appeared similar

to the photo in Fig. 4.4b at t = 94 s. Additionally, in a similar fashion to Fig. 4.4b, after

400 seconds, a stable pattern was reached. However, in contrast to Fig. 4.4b, approximately

half (53% to be precise) of the drops remained oxidized. We note that the stable state

was mainly composed of small domains of drops arranged in two different patterns. The

first pattern had three-fold symmetry and is highlighted with a red circle in Fig. 4.4c. The

pattern is the complement of Fig. 4.4b, i.e., each reduced stationary drop was surrounded by

six oxidized stationary drops and on average there were two oxidized drops for each reduced

drop. The second pattern, with two-fold symmetry, was more of a labyrinth, highlighted

with a blue circle in Fig. 4.4c. The pattern consists of a line of reduced drops parallel to a

line of oxidized drops, resulting in a 50-50 mix of oxidized and reduced drops. The two-fold

symmetric labyrinth pattern was present in a much higher proportion than the three-fold

symmetric pattern.

Taken together, the data in Fig. 4.4 demonstrated a clear trend of increasing fraction of

drops in the oxidized stationary Turing state with increasing coupling strength accomplished

by either reducing the drop diameter at constant malonic acid concentration, or reducing

malonic acid concentration at constant drop diameter. We examine this phenomenon further

with numerical simulations in the next section.

4.2.3.2 Finite element simulation of 2D patterns

To better understand the relationship between the various Turing patterns in 2D hexago-

nal lattices as a function of the inhibitory coupling strength, we performed finite element

modeling using COMSOL multiphysics software.
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In previous work[9], a simplified point model was used for simulating 2D lattices of BZ

droplets. Each drop was considered to be a single point and the oil separating drops was

treated implicitly by considering a specific coupling of chemicals directly between nearest

neighbors. Here we employ finite element modeling which allows for explicitly considering

both the size of the drop and the amount of oil separating drops[17]. To speed up the cal-

culation, we restricted the model to two dimensions as shown in Fig. 4.5, which compares

experiment and simulation. The same FKN theory was used in these simulations as in pre-

vious works for the equations governing chemical reactions and are included in the appendix

for completeness[17, 10]. We allowed only bromine to diffuse between droplets through oil

gaps in these simulations with a partition coefficient of 2.5. Bromine concentration is shown

in color with bromine flux shown in black arrows. An oxidized stationary droplet has a

higher bromine concentration and hence is redder than the reduced stationary drops. The

color scale in oil gap is different (2.5 times higher) from that in the aqueous droplet for

better appearance. The initial chemical conditions used in the simulation were chosen to

be similar to the experimental initial chemical conditions. Note that these conditions are

different than the steady state solutions of the reaction-diffusion equations. Random initial

bromide ion concentrations were used for the drops in the unit cell so that every drop would

start differently from the others. The randomness was limited to 20% of the average value of

initial bromide ion concentration, 5e-5 M. The initial chemical conditions for other species

in simulation were chosen to be similar to experimental initial chemical conditions, i.e. all

catalysts were in the reduced state and the concentrations for the other species were nearly

zero. Periodic boundary conditions were applied to the parallel pairs of the polygons.

In a 2D system, the monolayer of BZ drops is arranged in hexagonal lattice, thus a

hexagon unit cell was a natural choice for simulation (Fig. 4.5b and 4.5d). The hexagon

unit cell involves 7 drops, with 6 drops partly inside the cell and the center one fully inside,

resulting a total of 3 full drops in the unit cell. Parallel boundaries in the hexagon cell
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were set to be periodic, thus the unit cell extends to an infinite 2D plane. In the first four

images, Fig. 4.5a-d, the malonic acid concentration is held constant and the drop size is

varied; large drops in Fig. 4.5a-b and small drops in Fig. 4.5c-d. The simulation results

using the hexagon unit cell with large drops in Fig. 4.5b resembled the experimental pattern

in Fig. 4.5a in which 1/3 of the drops were oxidized. Likewise, the simulation results using

the hexagon unit cell with small drops in Fig. 4.5d resembled the experimental pattern in

Fig. 4.5c in which 2/3 of the drops were oxidized.

e

g

f

h

b

d

a

c

Figure 4.5: Experimentally observed stationary chemical states and finite element simula-
tions of BZ drops in 2D. The left hand column (a, c, e, g) are experimental photographs.
The yellow bar in each image is 100 µm long. The red polygon in each image is the unit
cell that was simulated and displayed in the right hand column. The right hand side (b, d,
f, h) are finite element calculations based on the 7-variable FKN model solved COMSOL.
Bromine concentration is shown in color (orange = high, blue = low) with the bromine flux
indicated by small black arrows. The small triangles in the simulations are the mesh used
for calculation. The conditions for each experiment and simulation are given in Table 4.1.

Besides patterns with three-fold symmetry, we also observed patterns with two-fold sym-

metry, as illustrated in Figs. 4.5e & g. Diamond shaped unit cells containing 4 full drops

(Figs. 4.5f & h) were used to simulate these patterns in which periodic boundary conditions
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Table 4.1: Parameters in Figure 4.5.

Figure a(µm) m (mM) OST (%)

a 120 200 33.3
c 50 200 66.7
e 50 400 25
g 50 200 50

b 100 40 33.3
d 40 40 66.7
f 40 100 25
h 40 40 50

were also applied. The size and symmetry of the unit cell restricts the chemical states that

the drops can adopt. With the hexagonal unit cell the possibilities for the fraction of drops

in the stationary oxidized state are {0, 1/3, 2/3, 1}, while with the diamond cell, the pos-

sibilities are {0, 1/4, 1/2, 3/4, 1}. In order to eliminate the bias imposed by choice of the

unit cell, we kept the unit cell constant and varied only one parameter at a time, i.e. the

drop diameter or malonic acid concentration.

Next we examine the parameters controlling the coupling strength, i.e. malonic acid

concentration m and drop diameter a, used in experiments and simulations in Fig. 4.5 as

listed in Table 4.1. We consider four cases involving drops in the stationary state. In Figs.

4.5a & c, m is constant at 200 mM while a decreased from 120 µm (Fig. 4.5a) to 50 µm

(Fig. 4.5c). Associated with the decrease in size is an increase in the fraction of drops in the

OST state from 1/3 (a = 120 µm) to 2/3 (a = 50 µm). From Fig. 4.5c to Fig. 4.5e, the drop

diameter is held constant at a = 50µm and m is increased from 200 mM to 400 mM, leading

to a decrease of OST fraction from 2/3 to 1/4. In each case, the fraction of oxidized drops

increases as coupling strength, S, increases. Fig. 4.5g and Fig. 4.5c were actually different

parts of the same experiment, each of which are indicated by circles in Fig. 4.4c. Finite

element simulations of closed packed arrays of drops as a function of a and m, shown in
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Figs. 4.5b, d, f, and h, revealed the same trend in OST fraction as experimentally observed.

The agreement between experiment and simulation was qualitative not quantitative. We

speculate that the reasons for this quantitative mismatch are that simulation is done in two

dimensions, instead of three and that the oil gap size in the finite element model was larger

than in experiment. We simulated in 2D and set the minimum oil gap size between nearest

neighboring drops to be 10% of the drop diameter instead of zero (for touching drops in

experiments) in order to increase the speed of the numerical calculations. While dramatically

saving computation time, these simplifications resulted in a weaker coupling strength for

the simulations in comparison to the touching drops in experiments. Consequently, the

simulations require smaller drop sizes and lower concentrations of malonic acid in order to

produce the same patterns as observed experimentally.

In order to calculate a state diagram of the system of hexagonal closed packed BZ drops,

we performed hundreds of simulations similar to the one shown in Fig. 4.5b for a wide range

of coupling strengths by varying m and a and the results are illustrated in Fig. 4.6a. In the

bottom left corner of the state diagram (blue region), where the coupling is the strongest, all

drops in the hexagon unit cell are non-oscillating. Increasing m and a from the stationary

region leads to the yellow region in which all three drops in the unit cell oscillate; two of the

drops oscillate in-phase with each other and π radians out of phase with the third drop. We

denote this pattern “00π” meaning two drops have zero phase difference and the third beats

180 degrees out of phase with the others. Weakening coupling strength by increasing drop

diameter a from the stationary region leads to the dark red region, which is another pattern

in which all three drops in the unit cell oscillate, but this time each drop has a 120 degrees

phase shift with its two neighbors in the unit cell. We denote this pattern “2π/3”. We find

the same pattern in the top right corner of the diagram where the coupling is the weakest.

The initial chemical conditions for each drop in the unit cell were taken from an isolated

free-run drop at phase shifts of 0, 120 and 240 degrees on the limit cycle at m = 400 mM.
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Figure 4.6: Simulated chemical state diagram with bromine only coupling and periodic
boundary conditions for a hexagonal lattice of BZ drops in 2D. (a) The model was simu-
lated at increments of 40 mM of malonic acid concentration and in increments of 40 µm of
drop diameter. Blue, yellow and dark red regions represent stationary, 00π oscillation, and
2π/3 oscillation, respectively. Controlled initial condition was used. (b) State diagram for
stationary Turing patterns. Simulations were performed at intervals of 10 mM of malonic
acid and at intervals of 20 µm, with 10 trials of random initial conditions. The randomness
was limited to 20% of the average value of initial bromide ion concentration, 5e-5 M. The
color scale represents the fraction of oxidized stationary Turing state, e.g. 0.33 (dark blue)
means 1/3 of the drops are oxidized
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Since this initial condition is the only other kind of initial condition we used for simulations

besides the random initial condition, we denote it as the “controlled initial conditions” in

this paper. We also numerically verified that decoupled (PB = 0) drops with conditions from

the blue stationary region of the state diagram of Fig. 4.6a would oscillate autonomously,

but these oscillating drops became stationary when coupled (PB = 2.5). This phenomena has

been referred to as coupling-induced oscillator death[68]. Our numerical analysis suggests

that the boundary between the stationary and oscillatory border in the state diagram does

not depend on initial conditions.

At this point, we make a brief comparison of simulation and experiment. Qualitatively,

there is a correspondence between regions of strong and weak coupling strength. For both

computation and experiment at strong coupling (small drops, low malonic acid) the drops

are stationary, while at weak coupling all drops oscillate in the 2π/3 state. We note that

there is a significant discrepancy between the computed state diagram of Fig. 4.6 and the

experiments of Fig. 4.4a. In experiment, for intermediate coupling strength, indicated by

Region II of Fig. 4.4a we observe the s0π state. However, in simulation this state is never

observed for homogeneous drops. Instead, all drops oscillate in the 00π state, which, in spite

of hundreds of experiments, was never observed in large arrays of hexagonally packed drops.

The origin of this discrepancy will be explored in the section on heterogeneity.

To explore further the stationary Turing pattern and quantify the fraction of drops in the

oxidized stationary Turing state as a function of coupling strength, we performed simulations

with higher resolution of m and a in part of the blue (stationary) region indicated by the

red dashed lines. Fig. 4.6b shows the fraction of drops in the Oxidized Stationary Turing

(OST) state using a different color map ranging from 1/3 (blue) to 2/3 (red). We observed

that the OST fraction also depends on initial conditions to a certain degree. Consequently,

we averaged the results from 10 trials of simulation at each point of the inset diagram with

randomized initial concentrations of bromide ion, the actual inhibitor in aqueous phase[30,
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31], for each of the 3 drops in the unit cell. We can see that as m increased beyond 50 mM,

or once a increased beyond 200 µm, the fraction of OST decreased quickly. Overall, the

computations reveal that the of fraction of stationary drops in the oxidized state increases

with smaller drop diameter and/or lower malonic acid concentration, i.e. with increased

stronger coupling strength. This trend agrees qualitatively with the experiments in Figs. 4.4

and 4.5.

The state diagram in Fig. 4.6a agrees with one calculated previously using a point-

oscillator model[15]. The only differences are that we considered activator coupling as well

as inhibitory coupling, which produced in-phase synchronous oscillations in the limit of high

coupling strength[15]. We verified that in-phase oscillations at high coupling strength occur

in the finite element model when activation coupling was included. Since we never observed

in-phase oscillations at high coupling strength in experiment, we only considered inhibitory

coupling in this section.

4.2.3.3 Heterogeneity in mixed patterns

The one qualitative difference between the simulated phase diagram and the experiments is

that in spite of a large number of attempts using a wide range of parameters, simulations of

a hexagon unit cell composed of identical BZ drops lack a mixed oscillatory and stationary

state, such as the experimentally observed s0π state in Fig. 4.4a, region II. As mentioned in

previous work[15], some heterogeneity must be introduced to either the geometry (i.e. the

drop diameter or interdrop spacing), or in the chemistry of the drops in order for the simula-

tions to generate mixed oscillatory and stationary patterns that resemble the experimentally

observed patterns.

In Fig. 4.7 we employ finite element calculations to numerically explore the effect of het-

erogeneity in chemistry, specifically the acidity [H+] in BZ drops. The oscillation frequency

increases rapidly with increasing acidity[30, 31]. The simulation employed a hexagonal unit
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Figure 4.7: Effect of chemical heterogeneity on the states of BZ drops in hexagonal lattices.
(a)–(e) are the fraction of drops that oscillate, calculated with parameters m and a as
indicated in the phase diagram (f), the same phase diagram as portrayed in Fig. 4.6. The
same finite element module and controlled initial condition was used for the simulations in
(a)–(e) as in the phase diagram (f). The light blue region in (a)–(e) represents patterns with
1/3 of drops oscillating; light green region with 2/3 of drops oscillating; purple region for all
(3/3) drops oscillating. The light green dashed line in phase diagram (f) marks the region of
s0π pattern with h2 = 0.15 M and h1 = h3 = 0.16 M, which is almost identical to the yellow
region of 00π for homogeneous drops. (g(i)) is a photograph of three optically isolated drops
and is the closest experimental observation of the 00π pattern. The drops with “x” had light
shone on them, which set those drops in the reduced, stationary state[15]. The yellow bar
is 100 µm long. (g(ii)) is a radial space-time plot with the time axis radial with a length
corresponding to 40 oscillations. The polar angles mark the relative phase shift between
oscillating drops. The color coding identifies the drops in g(i). The phase shift is plotted
relative to the purple drop and the phase of the purple drop is fixed at zero degrees.
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cell consisting of three drops of identical diameter with periodic boundary conditions, such

as shown in Fig. 4.5b. Each of the three drops in a unit cell are allowed to have different

values of [H+]: h1, h2, h3. We let two of these three values, i.e. h2 and h3, vary from 0.12

M to 0.2 M in increments of 0.01 M and leave one drop, h1, fixed at 0.16 M. In Figs. 4.7a

to 4.7e, we vary the drop size a and malonic acid concentration m, the two parameters that

most strongly control the coupling strength. The values of m and a used in Figs. 4.7a-e

are indicated by the corresponding letter in Fig. 4.7f. From the strongest coupling in Fig.

4.7a to the weakest coupling in Fig. 4.7d we noticed the trend of increasing area of the fully

oscillatory domain in purple, as well as the trend of diminishing area of the blue domain

where only one third of the drops oscillate. All non-oscillating drops were effectively in the

reduced stationary state, although they were actually oscillating with a very small amplitude

that was only observable in numerical simulations. The minimum amounts of heterogeneity

in [H+] needed for s0π state were 0.01 M (i.e. 1/16) for cases a, b, c, e and 0.02 M (1/8) for

case d.

In Fig. 4.7f we recalculated the phase diagram with the minimum heterogeneity in h2 so

that h1 = h3 = 0.16 M and h2 = 0.15 M. The result was nearly identical to the homogeneous

case in which all drops had the same acidity, h1 = h2 = h3 = 0.16 M, shown in Fig. 4.6,

except that almost all of the 00π pattern denoted by a yellow region in Fig. 4.6 transformed

to the s0π pattern as indicated by the yellow color and light green dashed line in Fig. 4.7f.

The simulation agrees with what we found in experiments (Fig. 4.4a region II) in that s0π

pattern occurs at medium coupling strength.

The 00π state observed in the simulated state diagram of perfectly identical drops, shown

in Fig. 4.6a, was never observed in experiments on large arrays of drops, which contain both

chemical and physical heterogeneities. However, there is one experimental example of the

00π state, which was for the case of a triplet of drops isolated from the rest by using light to

impose constant chemical conditions[15]. Fig. 4.7g shows our observation of the 00π state
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in a system with m = 400 mM and a = 150 µm, as indicated in Figs. 4.7(f) with a blue “g”.

Three times of the typical Ru(bipy)3 concentration was used in this particular experiment.

In Fig. 4.7g(i) the drops marked with a white “x” are optically inhibited creating constant

chemical boundary conditions for the three drops in a triangle indicated with colored circles.

Fig. 4.7g(ii) presents a radial-phase-time plot of the three drops in Fig. 4.7g(i). Time starts

at the center of the plot along the radial axis and the phase relative to the purple drop

is shown on the angular axis. The whole experiment was approximately 3 hours long and

contained 40 oscillations for each drop. For approximately 35 oscillations the orange and

blue drops are synchronized with zero relative phase and approximately 2π/3 out of phase

to the purple drop. Eventually the 00π state decays into the 2π/3 phase state. Although the

phase difference between the purple drop and the other two was not π, this was the closest

experimental pattern we could find for the 00π state.

4.3 Turing Morphogenesis

Turing argued that in Turing state d identical biological cells chemically differentiate into

active and inactive states and speculated that an activated gene could catalyze an increase

in the concentration of intracellular molecules, thereby driving physical differentiation by

increasing the osmotic pressure in that cell, causing it to swell[1]. In Figure 4.8 we demon-

strate precisely this effect in a hexagonal packing of microfluidically prepared identical drops

in Turing state d. The intensity of each drop is a monotonic function of the fraction of oxi-

dized BZ catalyst it contains. As shown in Figure 4.8a, the drops are initially homogeneous

in chemistry and drop size. After an initial induction time, the drops undergo a transition

from this unstable steady state to the Turing case d in which one out of three drops is in the

reduced (dark) state and two out of three are oxidized (bright), shown in Figure 4.8c. This

chemical differentiation occurs with the drop size remaining constant. The oxidized drops
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are catabolically active, consuming reagents faster than the reduced drops. This creates an

osmotic pressure imbalance causing water to flow from the oxidized to reduced drops creat-

ing a morphological transformation in which the initially homogeneous cells differentiate into

two populations with distinct chemical redox states and physical sizes, as shown in Figure

4.8e.

To investigate the origin of the physical change of BZ drops, consider the net reaction in

the FKN[30] model of the BZ reaction:

3BrO−3 + 5CH2(COOH)2 + 3H+ → 3BrCH(COOH)2 + 2HCOOH + 4CO2 + 5H2O (4.3)

We assume that this is the major reaction that takes place in going from the reduced to

the oxidized state. With the initial concentrations used, we have to take into account the

counterions (every BrO−3 comes with an Na+, H+ comes from H2SO4) and assuming the

sulfuric acid starts off as H+ + HSO−4 , but HSO−4 dissociates to H+ + SO2−
4 when the

reaction consumes H+. The limiting reactant is the MA. If the reaction goes to completion

in the oxidized state, all the MA is consumed. We assume that essentially all the CO2

partitions out of the drops. The initial and final concentrations are:
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Figure 4.8: Images and histograms of drops demonstrating morphogenesis plotted as fraction
of original drop area vs. fraction of original drop intensity. The color coded line tracks the
center of each peak as a function of time. a-b) Initially, drops are homogenous in both
intensity and size. Bright drops are oxidized, dark drops reduced. c-d) At intermediate
times the drops undergo a Turing case d (q,0) instability; heterogeneous in intensity, or
oxidation state, but homogenous in size. e-f) At later times drops are heterogeneous in both
oxidation state and size. The oxidized (bright) drops shrink and reduced (dark) drops swell.
Chemical conditions: 200 mM MA, 0.4 mM Rubipy, 0 mM NaBr, 80 mM H2SO4, 300 mM
NaBrO3, 3 mM Ferroin, 0.05 × 1 mm capillary, initial drop size ∼66 µm. Adapted from
previous work[15].
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Species Initial conc. [mM] Final conc. [mM]

Na+ 300 300

BrO−3 300 180

MA 200 0

H+ 80 40

HSO−4 80 0

SO2−
4 0 80

BrMA 0 120

HCOOH 0 80

Total 960 800

If we further assume that the drops in the reduced state consume no malonic acid and the

drops in the oxidized state go to completion, then this calculation shows that the maximum

difference in molarity is 17% between a reduced and oxidized drop. This difference in molarity

will drive a flux of water between the drops until the molarity of the drops is equal. In the

experiment, roughly two-thirds of the drops are oxidized and one-third reduced. This leads

to the prediction that the oxidized drops shrink by 6% in volume and the reduced drops

swell by 12% in volume. The drops have a measured diameter of ∼ 60 µm and they are

confined in a rectangular capillary of 50 µm height. Assuming the drops are spheres leads

to the prediction that the ratio of the radii of the swollen (reduced) to shrunken (oxidized)

drops is 1.06, while assuming the drops are highly confined in height to be approximated

as disks, the ratio of radii becomes 1.09. The measured ratio is 1.1, consistent with the

crude estimates given above. Additionally, we can think of no other plausible mechanism

to account for the change in size of the drops besides osmotic pressure. The combination

of the reasonable physical mechanism and agreement between quantitative prediction and

measurement leads us to conclude that osmosis drives the shape change, as speculated by

Turing.
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Chapter 5

Self-Oscillating Gel

The time you enjoy wasting is not

wasted time.

Bertrand Russell

This chapter is a small deviation from the main topic of this thesis, yet an important

potential application of BZ oscillation. Here we present some unpublished work on poly-

N-isopropylacrylamide (pNIPAm) hydrogel. The main purpose of this chapter is to provide

some references for the convenience of future research. We try to be brief without going into

details as the concepts we describe in this chapter were better explained in the references. The

results in this chapter are preliminary and unoriginal, but hopefully heuristic in preparing

one to enter this field.

5.1 Experiments

Our interest in pNIPAm gel was inspired by previous works in self-oscillating gels driven by

the BZ reaction as biomimetic materials[69]. As first reported in 1996 by Yoshida et al [70],

the mechanical oscillation was achieved by inducing the BZ reaction within a copolymer gel
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of NIPAm with Ru(bpy)2+
3 covalently bonded to the polymer chain. The catalyzed pNIPAm

gel swells and deswells at the oxidized and reduced states of Ru(bpy)3 while converting

chemical energy from the BZ reaction into the mechanical energy of the polymer network.

Despite numerous simulations that were reported to resemble the swelling and deswelling

in Ru(bpy)3 catalyzed pNIPAm gel[71, 72, 73], a quantitatively accurate prediction of the

gel volume change cannot be made without further understanding in the underlying physics.

The thermodynamics of hydrogel swelling by water absorption was founded by Flory and

Huggins in the 1940’s[74]. In the late 1970’s, Tanaka et al discovered that gels change volume

reversibly and discontinuously in response to environmental changes such as solvent com-

position, temperature, and pH change[75]. Tanaka developed the classic mean-field theory

of volume phase transition in gels incorporating Flory’s theory of polymer-solution mixing,

elasticity, and ionic interactions[76]. Grosberg and Nechaev improved Tanaka’s theory by

considering the neglected influence of topological constraints on subchain conformations in

the polymer network and achieved better quantitative agreement with experiments[77].

It is natural to study the swelling and shrinking of catalyzed bulk pNIPAm gels at first

because of the relatively simple gelation process and the convenient methods of observation

such as microscopy[78, 79]. However, since the motion of the polymer network of a gel during

the time course of swelling and shrinking is described by a collective diffusion equation[80],

the time needed for a gel to change its volume and shape is proportional to the square of a

characteristic length of the gel. Hence microgel particles with a small radius will have a much

faster response to a change of the environment. For example, the time needed for volume

change is 107 s for a spherical gel of 1 cm radius but is only 10−3 s for that with 1 µm radius.

The phase transition of gels is a macroscopic manifestation of the coil-to-globule transition

of individual linear chains. A comparison between the Ru(bpy)3 catalyzed pNIPAm microgel

and polymer chains in water will improve our understanding of the swelling and shrinking

mechanism of self-oscillating gels at the molecular level.
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Our goal is to eventually synthesize Ru(bpy)3 catalyzed pNIPAm microgel beads[81, 82]

and polymer chains[83], then carry out similar investigations to the properties of these gels

and polymers similarly as in the previous works[84, 85]. Therefore repeating previous inves-

tigations in non-catalyzed pNIPAm gels would be a helpful practice to learn the necessary

skills for the more challenging study of the catalyzed polymer and gel.

Here is our protocol for non-catalyzed pNIPAm microgel synthesis, following Pelton’s

recipe[86, 87]:

1. Prepare 100 ml two-neck round bottom flask, two rubber stoppers for the flask, stir

bar, reflux condenser, a rubber stopper for the condenser, needle for pressure balance, long

needle for oxygen removal with nitrogen, oil bath (heavy mineral oil), thermometer with

wire probe, and heat/stir plate.

2. Put 0.7 g NIPAm (N-Isopropylacrylamide, 99%), 0.07 g BIS (N,N’-Methylene-bis-

acrylamide), 0.0094 g SDS (sodium dodecyl sulfate) into the flask, then add 47 ml water (do

not shake the flask otherwise the powder may stick to flask wall). Set oil bath at 70° and

blow nitrogen into the water solution for 30 minutes to remove oxigen. The solution is stirred

at high rate with a large vortex in the center (unknown stir rate due to old device).

3. Pull the needle out of water solution but still leave it in. Add 3 ml water solution of

0.024 g (0.0001 mol) APS (ammonium persulfate, 98%) into the flask. Keep stirring for 4

hours. The stir rate is tuned down (to avoid the large vortex) after adding APS. Then let it

cool down slowly in the oil bath but keep stirring.

4. Centrifuge, decantation and dispersion with deionized water to remove SDS, polymer

chain and other impurities. Centrifuge speed: 12 krpm × 30 min for three times. Dispersion:

1 hour vortexing at maximum speed. Only small amount is centrifuged and the rest of the

stock remains raw, as SDS may prevent microgel from aggregating.

The experiment was successful at the first (and the only) trial and we obtained 50 ml

colloidal solution of fairly monodispersed pNIPAm gel microspheres with the average diam-
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eter of 265.4 nm and the coefficient of variation of 7.5%. The microgel beads are shown in

Fig. 5.1 as small black dots in the TEM image.

Figure 5.1: TEM image of microgel beads.

Dynamic and static laser light scattering were used in the studies of polymer chains and

submicron gel beads. Small sample particles undergoing Brownian motion give fluctuation

to scattered light intensity. Dynamic light scattering (DLS) is a technique that analyzes the

scattered intensity correlation function at a known angle, provides the diffusion coefficient

and hence the hydrodynamic radius via Stokes-Einstein equation. Measuring the radius of gel
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Figure 5.2: Theoretical swelling curves and experimental data of microgel.
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Figure 5.3: Reduced osmotic second virial coefficients. Five diluted microgel samples with
concentrations evenly distributed from 0.003 to 0.015 g/L were used in the SLS measurement.
dn/dC was assumed to be 0.18 ml·g−1 as in ref. [84] instead of accurately measured.
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beads at various temperature provides the swelling curve which is the essential experimental

data to be compared with theory. Static light scattering (SLS) provides the average molecular

weight by measuring the intensity of the scattered light; measurement at multiple angles

allows calculation of the radius of gyration; measurement for multiple sample concentrations

gives the second virial coefficient, which depends on the pair interaction between the particles

and therefore is an important parameter in understanding the swelling mechanism at the

molecular level.

In Fig. 5.2, we compare the experimental swelling curve from our microgel (diluted to

0.015 g/L, using DLS) with theories of Tanaka and Grosberg, as shown in Eqs (8) and

(11) in ref. [77], respectively. The improvement to Tanaka’s theory made by Grosberg is

demonstrated with the better agreement with experimental data.

We also measured the second virial coefficient of the microgel beads using SLS and

compared with the theory in Fig. 4 of ref. [85]. The result, as shown in Fig. 5.3, was

unsatisfactory and further investigation is needed.

5.2 Simulations

Numerous simulation results for self-oscillating BZ gels have been reported previously[71, 72,

73]. Finite element methods are commonly used in these simulations. Using diffusion module

and strain module in COMSOL Multiphysics with Tyson-Fife model for BZ chemistry[88], we

explored the possibility of simulating BZ gel volume oscillation. The results are preliminary

yet promising. We followed the frame of theory in ref. [73] which was based on the model

developed by Suo et al [89, 90]. The COMSOL implementation of the theory was learned

from a Master’s thesis[91]. The model file “gel volume oscillation(diffusion-strain-TF).mph”

can be found in Fraden lab’s homegroup space.

We demonstrate the prototype COMSOL simulation with a simple 2D square geometry

116



(with a width of 1e-4 m), representing a small piece of square gel soaked in BZ solution.

The geometry was meshed into 68 triangular elements with deformable mesh frame enabled.

The concentrations c1 and c2 in Tyson-Fife model correspond to the activator X and the

oxidized catalyst Z in the FKN model. And the total displacement evaluated at the top left

corner of the square gel is synchronized with c2 as shown in Fig. 5.4.

Figure 5.4: Catalyst concentration c2 and displacement.

Snapshots for minimum volume at t = 8 s and maximum volume at t = 14.2 s are

shown in Fig. 5.5. Color scale is for c2 concentration (red is high) and the black arrows are

displacement vectors (therefore no arrow for minimum volume).
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Time = 8 Time = 14.2

Figure 5.5: Snapshots for minimum and maximum volume. The deformed mesh used for
simulation is shown here.
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Chapter 6

Conclusion

The point of philosophy is to start with

something so simple as not to seem

worth stating, and to end with

something so paradoxical that no one

will believe it.

Bertrand Russell

Through the development of an experimental system of diffusively coupled synthetic cells

containing the Belousov-Zhabotinsky chemical reaction we performed the first quantitative

experimental tests of how well the Turing model describes reaction-diffusion cellular systems

in linear arrays, rings and 2D hexagonal networks. Each of the BZ chemical species is

known and as transport is restricted to permeation through the oil separating BZ drops,

reaction-diffusion is the only possible mechanism accounting for the phenomena reported

in this thesis. Quantitative synchronization experiments are consistent with the functional

form of the coupling term, but our calculation overestimates coupling strength.

In arrays of drops confined to lines and rings, five of the six distinct states corresponding

predicted by Turing’s linear stability analysis are observed, but their locations and final forms
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are significantly modified by nonlinearities. The implication is that linear analysis serves as

a qualitative guide to behavior; the prediction that two of the states are stationary and

non-uniform and three are synchronized oscillatory states is borne out, but a full non-linear

numerical treatment is necessary for quantitative and predictive theory.

First, we learned that in 1D BZ systems, emulsions introduce a new length scale, the drop

separation, with two regimes of behavior: strong and weak coupling, depending on whether

or not the reaction-diffusion length (λ) is longer (strong) or shorter (weak) than the drop

separation. For the conditions we study, emulsions confined to one dimension, inhibition due

to inter-drop diffusion of Br2 causes neighboring drops to oscillate out-of-phase with each

other. In experiments on large numbers of drops in a linear array at high concentrations of

malonic acid, we measure transient phase defects that take a long time to anneal, indicative

of weak chemical coupling. In contrast, at low malonic acid, the transients anneal quickly.

Simulations bear out this observation and also indicate that the boundaries influence the

phase differences between oscillators. The influence of the boundaries is a function of malonic

acid; the boundary influence is greater at high malonic acid, corresponding to weak coupling

between oscillators. In order to study interacting BZ droplets systematically, we developed

a programmable illumination system that allows the setting of both boundary and initial

conditions. We studied the behavior of groups of 3, 4 and 5 drops. The attractors are

predominantly out-of-phase as a consequence of the inhibitory coupling, but are modified

in non-trivial ways by the boundary conditions. In the case of 4 drops, a second attractor,

reflecting the symmetry of the system, is observed. The simulations for the small drop

system are in very good agreement with experiment with no adjustable parameters.

We then further investigated 1D systems with more significant excitatory coupling. While

we have not been able to manipulate the inhibitory and excitatory coupling completely inde-

pendently, the present experimental system affords considerably more control over coupling

than experiments in which interaction between oscillators occurs via an aqueous phase, so
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that all species participate in proportion to their concentrations[49], or systems in which the

inhibitor dominates the coupling between droplets. Numerical investigations of the more

complex 1D patterns suggest that both excitatory and inhibitory coupling are involved.

The fact that our experimental system is closed prevents us from obtaining true attrac-

tors, but the persistence of patterns that exhibit the same qualitative behavior for many

cycles of oscillation suggests that these behaviors would be stable if we were able to main-

tain constant conditions indefinitely. This conjecture is supported by the striking similarities

of even the most complex patterns in our experiments with the results of the simulations in

open systems, which represent true attractors.

The main conclusions for 1D BZ systems are:

1. The dynamical phase behavior of a chain of BZ drops is a function of coupling

strength. As coupling strength increases, the following sequence is observed in experiment

and numerical models: anti-phase, bistable anti-phase and in-phase / stationary Turing

states, in-phase.

2. Malonic acid concentration controls the coupling between BZ drops in oil by varying

the balance between excitatory and inhibitory coupling. Mechanistically, malonic acid re-

moves the inhibitor; therefore decreasing malonic acid increases inhibitory coupling. Drop

size is a more dominant factor in coupling strength than the length of the oil gap. Theory

suggests inhibitory coupling strength is characterized by S = PBr2D/(a(a+ b)keff).

3. Numerical models demonstrate that weak coupling solely through the inhibitors, Br2

and Br−, produces phase repulsive coupling, leading to anti-phase synchrony, while coupling

solely with activators, HBrO2 or BrO2·, produces attractive phase coupling, leading to in-

phase synchrony. Strong inhibitory coupling also produces in-phase synchrony; essentially

the drops lose their individual identities and effectively act as a single drop in the strong

coupling limit. The transition from weak to strong coupling is marked by a transition from

out-of-phase to in-phase synchrony and occurs at S ≈ 1.
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4. Comparing a finite element model to experiment, we conclude that Br2, BrO2·, and

HBrO2 exchange between drops with partition coefficients PBr2 = 2.5, PBrO2· = 1, and

PHBrO2 ≈ 0.01; both excitatory and inhibitory coupling need to be included in the models to

agree with the experiments.

5. The point oscillator model qualitatively agrees with experiment and a realistic 3D

finite element model.

6. An accurate phase model was constructed for the case of weak coupling and anti-phase

attractors.

7. Malonic acid concentration decreases with time in the closed system of microfluidic

drops. In contrast, our numerical models consider the malonic acid concentration to be

constant.

8. Malonic acid and bromine react in the oil, which is not accounted for in our numerical

models.

9. Simple numerical models account for the majority of the observations.

In 2D arrays, we described the transition from oscillatory to stationary chemical states

with increasing coupling strength, controlled by independently varying the reaction chemistry

within a drop and diffusive flux between drops. For stationary drops, we studied how the ratio

of stationary oxidized to stationary reduced drops varies with coupling strength. We observed

one mixed oscillatory and stationary state that is inconsistent with the linear and nonlinear

versions of the Turing model, as well as with finite element calculations. Our theoretical

analysis of the s0π state requires slight sample heterogeneity, which was not considered in

the original Turing model. As our theory is generic and heterogeneity is ubiquitous in nature,

we expect the s0π state to occur in a wide range of reaction-diffusion systems. Finally, we

experimentally establish for the first time, Turing’s prediction that interacting identical cells

differentiate into chemically distinct populations, which subsequently transform physically
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in size, thereby demonstrating that these synthetic cells are pluripotent and that abiotic

materials can undergo morphogenesis via the Turing mechanism.

The main conclusions for 2D BZ systems are:

1. Both reaction and diffusion mediate the coupling strength through the dimensionless

parameter S. Chemical reactions through the malonic acid concentration, m and physical

diffusion through the drop diameter, a. Chemically, increasing m increases bromine con-

sumption via the bromination of malonic acid inside a drop, hence the bromine diffusing

from other drops would have less effect at increasing the bromine concentration inside the

drop with high m, and thereby the coupling strength is weak. Physically, increasing a in-

creases the time for bromine to diffuse from one drop to another and thereby gives the

bromine more time to react with the malonic acid. Thus the bromine in a large drop is

less likely to diffuse to a neighboring drop before it is consumed. When m and a are small

enough, the diffusive lateral inhibition becomes strong enough to induce oscillator death and

cause stationary patterns to emerge in 2D systems. A stationary drop can be either oxidized

stationary that is continuously emitting bromine, or reduced stationary that is continuously

being inhibited. As m or a are decreased further, the diffusive lateral inhibition gets even

stronger. More stationary drops were found in the oxidized state and fewer in the reduced

state; in other words, more drops were doing the inhibiting and fewer drops were inhibited.

2. Finite element methods provide the highest accuracy for simulations of reaction-

diffusion systems in complex geometries. This level of accuracy is necessary to properly

simulate our 2D systems, at the price of higher computational power and longer computing

time compared to simplified point models. Using the finite element model we have simulated

patterns resembling all the stationary patterns we found in experiments. Over a wide range

of coupling strength we generated a simulated state diagram that agreed qualitatively with

experiments. The trend of increasing fraction of oxidized stationary drops with increasing

coupling strength, observed in experiment, was also found in simulations. We performed
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simulations with various combinations of coupling species and the best results are obtained

when the coupling is through only bromine.

The current finite element model (with 3 drops inside a hexagon unit cell) can be improved

for better quantitative agreement with experiments in the future by allowing the drops to

touch, and by constructing a fully 3D geometry. Moreover, a larger unit cell would provide

insight on the effect of diffusion beyond that of nearest neighbors.

3. Microfluidic devices generate physically and chemically monodispersed BZ droplets

with only a few percent of variance. We have demonstrated that a few percent of chemical

variance in simulations (∼6% in acidity, which controls the oscillatory frequency) was enough

to generate the s0π pattern, which in spite of great effort, could not be found in simulations

employing identical drops. Experimental observation of the 00π pattern was limited to the

case of three optically isolated drops. The 00π pattern was never observed in large arrays

of drops for which, inevitably, there was some heterogeneity in the lattice and hence in

the coupling strength. It would be interesting to systematically investigate the effect of

heterogeneity in the future by deliberating varying the physical size, chemical composition,

and positions of individual drops in a variety of two dimensional lattices and networks.
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Phenomena of Polymer Gels. In K. Dušek, editor, Responsive Gels: Volume Transitions
I, volume 109 of Advances in Polymer Science. Springer Berlin Heidelberg, 1993.

[77] A. Yu. Grosberg and S. K. Nechaev. Topological Constraints in Polymer Network Strong
Collapse. Macromolecules, 24(10):2789–2793, 1991.

[78] Ye Zhang, Ning Li, Jorge Delgado, Ning Zhou, Ryo Yoshida, Seth Fraden, Irving R.
Epstein, and Bing Xu. Structural Modulation of Self-Oscillating Gels: Changing the
Proximity of the Catalyst to the Polymer Backbone to Tailor Chemomechanical Oscil-
lation. Soft Matter, 8:7056–7061, 2012.

[79] Ye Zhang, Ning Zhou, Ning Li, Megan Sun, Dongshin Kim, Seth Fraden, Irving R.
Epstein, and Bing Xu. Giant Volume Change of Active Gels under Continuous Flow.
Journal of the American Chemical Society, 136(20):7341–7347, 2014.

[80] Yoshiharu Hirose, Takayuki Amiya, Yoshitsugu Hirokawa, and Toyoichi Tanaka. Phase
Transition of Submicron Gel Beads. Macromolecules, 20(6):1342–1344, 1987.

[81] Takamasa Sakai and Ryo Yoshida. Self-Oscillating Nanogel Particles. Langmuir,
20(4):1036–1038, 2004.

[82] Jingyi Shen, Srinivasa Pullela, Manuel Marquez, and Zhengdong Cheng. Ternary Phase
Diagram for the Belousov-Zhabotinsky Reaction-Induced Mechanical Oscillation of In-
telligent PNIPAM Colloids. The Journal of Physical Chemistry A, 111(48):12081–12085,
2007.

[83] Ryo Yoshida, Takamasa Sakai, Shoji Ito, and Tomohiko Yamaguchi. Self-Oscillation of
Polymer Chains with Rhythmical Soluble-Insoluble Changes. Journal of the American
Chemical Society, 124(27):8095–8098, 2002.

[84] Chi Wu and Shuiqin Zhou. Light Scattering Study of Spherical Poly(N-Isopropyl-
acrylamide) Microgels. Journal of Macromolecular Science-Physics, B36(3):345–355,
1997.

[85] Jianzhong Wu, Gang Huang, and Zhibing Hu. Interparticle Potential and the Phase
Behavior of Temperature-Sensitive Microgel Dispersions. Macromolecules, 36(2):440–
448, 2003.

[86] Wayne McPhee, Kam Chiu Tam, and Robert Pelton. Poly(N-Isopropylacrylamide) Lat-
ices Prepared with Sodium Dodecyl Sulfate. Journal of Colloid and Interface Science,
156(1):24–30, 1993.

[87] Robert Pelton. Temperature-Sensitive Aqueous Microgels. Advances in Colloid and
Interface Science, 85(1):1–33, 2000.

131



[88] John J. Tyson and Paul C. Fife. Target Patterns in a Realistic Model of the Belousov-
Zhabotinskii Reaction. The Journal of Chemical Physics, 73(5), 1980.

[89] Wei Hong, Xuanhe Zhao, Jinxiong Zhou, and Zhigang Suo. A Theory of Coupled
Diffusion and Large Deformation in Polymeric Gels. Journal of the Mechanics and
Physics of Solids, 56(5):1779–1793, 2008.

[90] Jiaping Zhang, Xuanhe Zhao, Zhigang Suo, and Hanqing Jiang. A Finite Element
Method for Transient Analysis of Concurrent Large Deformation and Mass Transport
in Gels. Journal of Applied Physics, 105(9):093522, 2009.
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